• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 20
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 50
  • 25
  • 22
  • 20
  • 18
  • 17
  • 15
  • 14
  • 14
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Unravelling the Mechanical Symphony: Exploring YAP and β-catenin Interactions in Breast Cancer Metastasis Implications

Su, Zhi Hong January 2023 (has links)
Breast cancer metastasis is one of the reasons why this type of cancer is destructive even after treatment as it tends to move from one organ to another increasing the risk factor for an individual. In the metastatic cascade, the tumour undergoes many different types of stress, including extracellular (ECM) stiffness. Key proteins that have been linked to the change in stiffness of the ECM are YAP and β-catenin. Both functions similarly in the manner that they need to translocate to the nucleus and bind to their respective transcription factors in order to activate their downstream genes. In parallel this seems to be on a stiffness dependent manner. Therefore, the hypothesis is that β-catenin is able to compensate for YAP function when YAP is downregulated in a stiffness dependent manner. In this work, results show a significant increase of YAP and β-catenin translocation to the nucleus of MDA-MB-231 cells when they are subject to the stiffer substrate in comparison to the softer substrate indicating increase gene expression of their respective pathways. The effect of the stiffness was then analyzed by doing single knockdown experiments with siRNA. To investigate the response of β-catenin, knocking down YAP was done, and it was shown that β-catenin translocation significantly increased on the softer matrix, while stiffer matrix showed no significant difference. Downstream gene expression also confirmed this idea with CTGF being downregulated with β-catenin knockdown and AXIN2 being downregulated with YAP knockdown. In the cell behavioural aspect, only when the double knockdown of YAP and β-catenin was done, the migration and proliferation rate had significant lowered. This echoes the idea further of the compensating effects of β-catenin to YAP. In addition, the exploration of the cytoskeleton network was investigated, as this is a key component in protein pathways, by treating the cells using LatA and Blebbistatin, affecting F-actin and myosin-II respectively. Knowing the critical role of cytoskeletal proteins in mechanotransduction, the hypothesis is that actin filaments and myosin-II mediate the YAP & β-catenin nuclear translocation activation. Findings show the direct relationship between F-actin and YAP as actin polymerization state significantly decreased when YAP was knockdown in a similar manner to when LatA was added. When myosin-II was added, both YAP and β-catenin nuclear translocation were affected, indicating its potential role in mechanotransduction. Furthermore, it was found that cell confluency and PIEZO1 activation had significant effects in YAP & β-catenin translocation. By seeding the cells with different densities, the β-catenin signalling could be visualized with IF staining, with the conclusion that at high confluency, the β-catenin translocation was alleviated. For the PIEZO1 studies, results indicate that PIEZO1 is an upstream regulator of YAP by doing single knockdown experiments and subsequently analysing YAP signalling. The findings underscore the potential significance of β-catenin as a modulator of mechanotransduction in the absence of YAP, showcasing the complexity of the protein signalling network orchestrating cellular response due to mechanical cues. Unravelling these protein interplay could offer novel insights into therapeutic targets for breast cancer mechanotransduction. Ultimately, this research adds to the understanding of the intricate protein signalling that governs mechanotransduction in breast cancer cells. The discovery of stiffness dependent YAP & β-catenin signalling, the interplay between YAP and β-catenin pathway mechanotransduction implicated by cell density, the regulation of YAP- β-catenin interplay in mechanotransduction by PIEZO1, the importance of F-actin & myosin-II in YAP & β-catenin translocation, and the YAP & β-catenin effects on cell behaviour, all help lay the groundwork for devising targeted interventions to impede cancer progression. / Thesis / Master of Applied Science (MASc) / Breast cancer is the most prominent type of cancer that exists in women and like other cancers, it can spread to other organs such as the bone, liver, and brain even though the microenvironments are different. With different proteins like yes-associated protein (YAP) regulating this microenvironmental change in the primary and secondary sites, it can flourish and become more aggressive which leads to death for the host. The interactions of these proteins and their pathways which affects the aggressiveness of the cancers are still not well understood. This project investigates the interaction between YAP and β-catenin in response to surface stiffness to understand the mechanical regulation of breast cancer metastasis. Alongside the protein signalling, cytoskeletal components, downstream gene expression, cell confluency, and membrane proteins are explored. Our results show that an increase in stiffness allow for higher nuclear translocation for YAP and β-catenin, enhancing downstream gene expression relating to migration and proliferation. Furthermore, in lower stiffness the crosstalk between YAP and β-catenin results in an inverse relationship. These findings suggest β-catenin compensates YAP function when YAP is inhibited. In terms of the cytoskeletal protein, an integral part of the cell, the intervention saw a significant alteration in the YAP & β-catenin signalling. Additionally, cell confluency played a large role in β-catenin nuclear translocation implicating the role of cell-to-cell contact in mechanotransduction. To see if mechanosensitive membrane proteins fit into the pathway, PIEZO1 studies were done and results show that it is an upstream effector of YAP, and consequently an indirect connection with β-catenin. All in all, this thesis provides insightful information in the role of stiffness matrix, cell confluency, membrane proteins and how that regulate YAP & β-catenin. This research provides the mechanism for the synergistic therapies targeting multiple proteins to prevent cancer growth and metastasis.
22

Dôkaz somatických mutácií významných pre neuroektodermálne nádory (CTNNB1, BRAF, ALK) / Verification of somatic mutations important for neuroectodermal tumors (CTNNB1, BRAF, ALK)

Hrindová, Božidara January 2015 (has links)
The diploma thesis was focused on evidence of selected somatic mutations in genes ALK (Anaplastic lymphoma receptor tyrosine kinase), BRAF (v-Raf murine sarcoma viral oncogene homolog B1) and β-catenin (CTNNB1) through molecular - genetic methods in the target group of neuroectodermal tumors (neuroblastoma, medulloblastoma, brain tumors, paraganglioma and pheochromocytoma). Some of them are already considered as prognostic indicators which help to identify the subtype of various tumors and on the basis of this molecular - biological classification choosing the appropriate treatment. The genetic material of 133 patients was used for the analysis divided by the type of cancer. The presence of the mutation was detected in seven cases, of which two of them beloged to the gene BRAF, one to the gene ALK and four to the gene β-catenin. The subject of research in the cases of this genes were hotspot mutation sites. The purpose was to confirm the presence of the mutation in the hotspots and contribute to the studies which are aimed at the introduction of more suitable treatment through the inhibitors of mutated genes. Keywords: ALK, BRAF, β-catenin (CTNNB1), neuroectodermal tumors, sequencing, MLPA
23

The actin cytoskeleton and the nuclear translocation of β-catenin in human oesophageal squamous carcinoma cell lines

Dahan, Yael-Leah 16 November 2006 (has links)
Student Number : 9906751K - MSc dissertation - School of Molecular and Cell Biology - Faculty of Science / In addition to its crucial role in cell adhesion, β-catenin is also known to augment gene expression by forming a complex with lymphoid enhancer factor/T-cell factor in the nucleus. Unregulated β-catenin expression and/or its increased nuclear presence can lead to abnormal cell proliferation, tumour invasion and metastasis. Pertinent is the fact that the actin cytoskeleton is central to the translocation of several nuclear proteins. This study investigated whether the actin cytoskeleton influences the nuclear translocation of β-catenin in human oesophageal squamous cell carcinoma (HOSCC), a metastatic disease of common occurrence in South Africa. Disruption of the actin cytoskeleton of five moderately differentiated HOSCC cell lines, with cytochalasin D (cytoD), showed that the nuclear β-catenin level was unaltered in SNO, WHCO1 and WHCO5, but decreased in WHCO3 and WHCO6. CytoD treatment did not affect the cytoplasmic/membrane β-catenin level in these cell lines. Further examination of the possible association between the actin cytoskeleton and nuclear β-catenin translocation, required the design and stable transfection, of a vector containing full-length human β-catenin cDNA into one of the HOSCC lines. Stimulation of exogenous β-catenin expression in transfected WHCO1 cells did not increase cellular β-catenin level, nor did the stimulation of endogenous β-catenin expression with DMSO. In most cases (SNO, WHCO1 and WHCO5) the nuclear distribution of β-catenin in HOSCC is independent of a functional actin cytoskeleton, nonetheless there are some exceptions (WHCO3 and WHCO6). The observed variation within the HOSCC lines is possibly due to specific underlying event/s particular to the cell line. The stable level of β-catenin expression could be a consequence of regulatory pathways in WHCO1 compensating for the induced imbalance of β-catenin expression.
24

Rôle de Dicer dans la pigmentation et sa régulation par les UVB dans le lignage mélanocytaire / Role of Dicer in pigmentation and its regulation by UVB in the melanocyte lineage

Bertrand, Juliette 20 September 2017 (has links)
Les mélanocytes, cellules responsables de la pigmentation de la peau et des poils, protègent les cellules des stress environnementaux, en particulier des rayonnements ultra-violets (UV) présents à la surface de la Terre. Les UV induisent des dommages moléculaires et régulent de nombreuses voies de signalisation en aval de MC1R, MAPK, PI3K, ou PKC. A court terme, les UV peuvent induire la mélanogenèse et à long terme participent à la mélanomagenèse. Dicer, protéine clef de la maturation des microARN, est régulée par différents stress. La protéine multifonctionnelle β-caténine est impliquée dans le développement des mélanocytes. Ces deux protéines participent à la régulation fine de l'expression génique. L'objectif de cette thèse est de mettre en évidence le rôle et la régulation de Dicer dans le lignage mélanocytaire dans des conditions normales et de stress (UVB). Dans une première partie, nous nous sommes intéressés au rôle de Dicer dans la pigmentation et sa régulation dans le lignage mélanocytaire. Nous avons montré, in vivo dans un modèle murin, que Dicer est nécessaire à la fois à la mise en place du lignage mélanocytaire et au fonctionnement de ce lignage chez l'adulte. L'absence de Dicer dans le lignage mélanocytaire affecte la localisation des mélanocytes de la papille dermique du follicule pileux et empêche la pigmentation du poil. In vitro, la transcription de Dicer est régulée par différentes voies, en particulier par les protéines PI3K, RSK, GSK3β et β-caténine. L'activité répressive de β-caténine sur la transcription de Dicer est dépendante de sites LEF/TCF. Dans une deuxième partie, nous nous sommes intéressés à l'implication de Dicer, en relation avec β-caténine, dans la réponse aux UVB. Nous avons mis en évidence in vivo et in vitro la relocalisation nucléaire et l'activation transcriptionnelle de β-caténine induites par les UV. Tout comme β-caténine, les UVB répriment la migration des mélanocytes in vitro. Nous avons montré in vitro que les UVB répriment l'expression de Dicer et que cette répression est dépendante de sites de fixation de facteurs de transcription, dont LEF/TCF, présents dans la région promotrice de Dicer. Une diminution de Dicer participe à la protection des mélanocytes contre les UVB. Ce travail de thèse a donc permis de montrer le rôle de Dicer dans la pigmentation adulte et de mettre en évidence des voies de régulation de l'expression de Dicer dans les mélanocytes non stressés et dans les mélanocytes soumis à un stress UVB. / Melanocytes, cells responsible for pigmentation of the skin and hair, protect cells from environmental stress, especially ultra-violet radiations (UV) present on Earth floor. UV induce molecular damages and regulate many signaling pathways downstream of MC1R, MAPK, PI3K, or PKC. In the short term, UV can increase melanogenesis and in the long term, participate in melanomagenesis. Dicer, a key protein involved in microRNA maturation, is regulated by different types of stress. The multifunctional protein β-catenin is implicated in melanocyte development. These two proteins participate in fine regulation of gene expression. The goal of this thesis is to highlight the role and regulation of Dicer in the melanocyte lineage in normal and UVB stress conditions. In the first part, we focused on the role of Dicer in pigmentation and its regulation in the melanocyte lineage. We showed that, in a mouse model in vivo, Dicer is necessary for both establishment of melanocyte lineage and proper function of this lineage in adults. The lack of Dicer in the melanocyte lineage affects localization of melanocytes in the dermal papilla of hair follicles, preventing hair pigmentation. In vitro, Dicer transcription is regulated by different pathways, including PI3K, RSK, GSK3β and β-catenin. LEF/TCF sites mediate the repressive activity of β-catenin on Dicer transcription. In the second part, we focused on the implication of Dicer, in connection with β-catenin, in the response to UVB by melanocytes. We showed the nuclear relocalization and transcriptional activation of β-catenin induced by UV both in vivo and in vitro. Like β-catenin, UVB represses melanocyte migration in vitro. We showed in vitro that UVB represses Dicer expression and that this repression is dependent on transcription factors binding sites in the Dicer promoter region including LEF/TCF. Decreased level of Dicer participates in protection of melanocytes against UVB. This thesis work allowed us to show the role of Dicer in adult pigmentation and to highlight signaling pathways implicated in Dicer expression regulation in non-stressed melanocytes and in UVB-stressed melanocytes.
25

Hnf4α and Choline Metabolism Role in β-catenin Activated Liver Carcinogenesis / Le rôle d’Hnfα et du métabolisme de la choline dans les carcinomes hépatocellulaires activés pas la β-caténine

Sartor, Chiara 24 September 2015 (has links)
La voie de signalisation WNT/β-caténine est impliquée dans de nombreuses processi cellulaires, du développement à la physiologie. Dans le foie adulte, elle est nécessaire pour établir et maintenir la zonation métabolique, condition préalable pour la fonctionnalité de l’organe, mais elle est aussi cause d’un pourcentage non négligeable (11-32%) de carcinomes hépatocellulaires (CHC), qui surviennent après mutation activatrice du gène codant la β-caténine. Mes travaux se sont inscrits dans la continuité de travaux de l’équipe auxquels j’ai participé , et ont eu pour principaux objectifs : (1) d’explorer le rôle du facteur de transcription Hnf4α dans la physiologie et les cancers du foie, en lien avec la signalisation β-caténine ; (2) de déterminer si une imagerie tumorale par tomographie par émission de positrons (TEP) spécifique de la captation de choline pouvait prédire les CHC mutés pour la β-caténine et si le métabolisme de la choline pouvait présenter une piste thérapeutique des cancers du foie.Pour ces deux projets, j’ai eu accès à des cohortes de patients atteints de cancers du foie, mais j’ai également pu bénéficier du modèle gain-de-fonction de la β-caténine développé au laboratoire, qui consiste en une perte du suppresseur de tumeur Apc, frein majeur de la voie β-caténine conduisant à des cancers du foie. Grâce à un modèle d’invalidation hepato-spécifique et conditionnelle du gène Hnf4α, j’ai pu prouver que la perte de Hnf4α mène à une augmentation de la prolifération, du stockage des lipides dans le foie et à une désorganisation de l’architecture zonale hépatique, en particulier celle de la triade portale. J’ai aussi démontré que dans un contexte de carcinome murin invalidé par Apc, le rôle suppresseur de tumeur d’Hnf4α était mineur.Une approche métabolomique avait montré qu’un signal β-caténine perturbait le métabolisme des phospholipides dérivant de la choline. Grâce à une étude parallèle réalisée chez des patients porteurs de CHC d’une part, et dans nos modèles murins d’autre part, nous avons pu mettre en évidence par TEP une fixation accrue de la F-choline dans les tumeurs activées β-caténine. Ce phénotype est spécifique d’une signalisation β-caténine active puisque cette captation accrue n’était pas présente chez les patients porteurs de carcinome hépatocellulaire non mutés ou chez les souris présentant une cancérogenèse indépendante de la β-caténine (modèle DEN). J’ai ensuite étudié le devenir intracellulaire de la choline. En utilisant de la choline radiomarquée j’ai montré in vitro qu’un signal β-caténine aberrant accroit l’incorporation de choline dans les phospholipides, et accroit également son rôle de donneur de groupements méthyles, participant à la méthylation de l’ADN. Cela pourrait expliquer pourquoi l’ADN est hyperméthylé chez les souris avec la perte d’Apc, puisque l’administration d’un régime sans choline et methionine à ces souris réverse le phénotype d’hyperméthylation. L’ensemble de ces résultats suggère que la choline pourrait jouer un rôle important dans la cancérogenèse liée à la β-caténine. Nous proposons que des TEP F-choline pourraient être utilisés pour diagnostiquer les CHC mutés β-caténine, et à terme des thérapies ciblées sur ce métabolisme pourraient être envisagées. / WNT/β-catenin is a pillar during development and in adult physiology. In particular in the adult liver it is a double-edged sword: it is necessary to establish the metabolic zonation, requirement for having a functional organ, but it is also involved in the onset of 11-32% of hepatocellular carcinoma (HCC). My thesis work has been based on the team previous results and it is focused on two main subjects: (1) the first aim was to decipher the role of Hnf4α both in physiology and in HCC development and its relationship with WNT/β-catenin signalling and (2) the second part explores the possible use of Fluoro-choline (FCh) positron emission tomography (PET) in the diagnosis of β-catenin-activated liver tumours.In this study I used cohorts of patients having HCC, but also inducible and hepatospecific knock-out mice for adenomatous polyposis coli (APC) gene (thereafter called ApcKO mice). Apc is the most important negative regulator of β-catenin, and it hepatic loss leads to aberrant activation of β-catenin, disrupting liver zonation and initiating long-term liver cancers. I generated also inducible hepatospecific Hnf4α knock-out mice and I demonstrated an increased proliferation, lipids accumulation and disorganization in the portal triad architecture, together with a mild distruption of liver zonation. Then, looking at cancer onset, I demonstrated that Hnf4α loss is not able per se to initiate liver cancer, and has no tumour suppressor role in β-catenin activated tumours onset and progression.We performed a metabolic analysis of ApcKO livers, showing that β-catenin is able to deregulate lipids metabolism, in particular that of phospholipids derived from choline. In collaboration with clinicians, I studied human patients who underwent FCh/PET, showing that β-catenin-mutated tumours had an increased uptaken of F-Choline whereas non-mutated β-catenin human HCC had not. Similar results were obtained with mice, either ApcKO β-catenin-activated HCC or β-catenin-independent mice HCC, obtained through a N-diethylinitrosamine (DEN) injection.Choline in cells splits in two main pathways: it is both a methyl-group donor and a precursor for phospholipids production. I tested this through radiolabeled fluxes in in vitro experiments. In β-catenin activated hepatocytes and tumours there are more phospholipids and more methyl groups in DNA derived from choline than in control mice. Moreover in ApcKO DNA is hypermethylated, and it is dependent on choline supply from diet.All these results together show the importance for β-catenin activated tumours to have a supply in choline, and so open a way not only in PET exploitation for having a precise diagnosis, but also in deciphering the importance of choline pathway, to possibly develop a targeted therapy.
26

Efeito α-tomatina na proliferação celular, apoptose e expressão de RNAm dos genes APC, Ciclina A2, Catenina, CASP9, BAK, BAX e BCL-XL em células HT29 /

Ishii, Priscila Lumi. January 2011 (has links)
Orientador: Lúcia Regina Ribeiro / Banca: Daniel Araki Ribeiro / Banca: Maria Izabel Souza Camargo / Resumo: A Nutrigenômica é definida como o efeito da dieta na expressão gênica, e a extensão pela qual as diferenças genéticas entre os indivíduos influenciam a resposta a um padrão específico de dieta, à ingestão de alimentos funcionais e à suplementação de micronutrientes, em termos de um resultado para a saúde humana. A α-tomatina é um glicoalcalóide encontrado no tomate (Lycopersicon esculentum) que possui funções biológicas importantes como a redução dos níveis de colesterol LDL, inibição do crescimento de células cancerosas, estimulação do sistema imune e efeito antimetastático. O objetivo deste estudo foi avaliar a citotoxicidade da α-tomatina, os seus efeitos na proliferação celular, na indução de apoptose e expressão de RNAm dos genes APC, Ciclina A2, Catenina, CASP9, BAK, BAX e BCL-XL em células HT29. As células foram cultivadas em meio de cultura DMEM, suplementado com 10% de soro bovino fetal, e tratadas nas concentrações de 0,1, 1 e 10 μg/mL para o ensaio do MTT e proliferação celular. Na análise de apoptose morfológica utilizou-se as concentrações de 0,1, 1 e 2 μg/mL. Já para a avaliação da expressão gênica utilizou-se a concentração de 1 μg/mL. Após 12 horas de tratamento, o RNA das células foi extraído e a expressão dos genes foi avaliada através do método de PCR em tempo real. O gene GPDH foi utilizado como normalizador. A análise estatística foi realizada por ANOVA/Tukey para o ensaio do MTT. Os resultados do ensaio de cinética de proliferação celular, viabilidade celular e avaliação da indução de apoptose foram analisados estatisticamente através de ANOVA/Dunnet, e para a análise da expressão gênica utilizou-se o método de Pfaffl et al. (2002), através do cálculo estimado pelo método ΔΔCt. Os estudos experimentais indicaram que a α-tomatina foi citotóxica apenas na concentração de 10 μg/mL... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Nutrigenomics is defined as the effect of diet on gene expression, and the extent to which genetic differences between individuals influence the response to a specific pattern of diet, intake of functional foods and micronutrient supplementation, in terms of a result for human health. The α- tomatine is highlighted as a glycoalkaloid found in tomato (Lycopersicon esculentum) that has important biological functions such as reducing levels of LDL cholesterol, inhibit cancer cell growth, stimulation of the immune system and antimetastátic effect. In view of these considerations, the objective of this study was to evaluate the cytotoxicity of α-tomatine, their effects on cell proliferation, induction of apoptosis and morphological expression of mRNA of APC gene, Cyclin A2, β-Catenin, CASP9, BAK, BAX and BCL-XL in HT29 cells. The cells were grown in DMEM culture medium supplemented with 10% fetal bovine serum, and treated at concentrations of 0.1, 1 and 10μg/mL for the MTT assay and cell proliferation. In the morphological analysis of apoptosis, we used concentrations of 0.1, 1 and 2μg/mL. As for the evaluation of gene expression we used a concentration of 1 mg/mL. After 12 hours of treatment, the RNA from cells was extracted and gene expression was evaluated by the method of real-time PCR. The gene GPDH was used as normalizer. Statistical analysis was performed by ANOVA / Tukey test for MTT. The test results of kinetics of cell proliferation, cell viability and assessment of apoptosis were analyzed with ANOVA / Dunnet, and for analysis of gene expression we used the method of Pfaffl et al. (2002), by calculating estimated by ΔΔCt. Experimental studies suggested that α-tomatine was cytotoxic only at concentration of 10μg/mL. In the evaluation of cell proliferation were no significant differences in the treatments with α-tomatine, except that for the concentration... (Complete abstract click electronic access below) / Mestre
27

β-CATENIN REGULATION OF ADULT SKELETAL MUSCLE PLASTICITY

Wen, Yuan 01 January 2018 (has links)
Adult skeletal muscle is highly plastic and responds readily to environmental stimuli. One of the most commonly utilized methods to study skeletal muscle adaptations is immunofluorescence microscopy. By analyzing images of adult muscle cells, also known as myofibers, one can quantify changes in skeletal muscle structure and function (e.g. hypertrophy and fiber type). Skeletal muscle samples are typically cut in transverse or cross sections, and antibodies against sarcolemmal or basal lamina proteins are used to label the myofiber boundaries. The quantification of hundreds to thousands of myofibers per sample is accomplished either manually or semi-automatically using generalized pathology software, and such approaches become exceedingly tedious. In the first study, I developed MyoVision, a robust, fully automated software that is dedicated to skeletal muscle immunohistological image analysis. The software has been made freely available to muscle biologists to alleviate the burden of routine image analyses. To date, more than 60 technicians, students, postdoctoral fellows, faculty members, and others have requested this software. Using MyoVision, I was able to accurately quantify the effects of β-catenin knockout on myofiber hypertrophy. In the second study, I tested the hypothesis that myofiber hypertrophy requires β-catenin to activate c-myc transcription and promote ribosome biogenesis. Recent evidence in both mice and human suggests a close association between ribosome biogenesis and skeletal muscle hypertrophy. Using an inducible mouse model of skeletal myofiber-specific genetic knockout, I obtained evidence that β-catenin is important for myofiber hypertrophy, although its role in ribosome biogenesis appears to be dispensable for mechanical overload induced muscle growth. Instead, β-catenin may be necessary for promoting the translation of growth related genes through activation of ribosomal protein S6. Unexpectedly, we detected a novel, enhancing effect of myofiber β-catenin knockout on the resident muscle stem cells, or satellite cells. In the absence of myofiber β-catenin, satellite cells activate and proliferate earlier in response to mechanical overload. Consistent with the role of satellite cells in muscle repair, the enhanced recruitment of satellite cells led to a significantly improved regeneration response after chemical injury. The novelty of these findings resides in the fact that the genetic perturbation was extrinsic to the satellite cells, and this is even more surprising because the current literature focuses heavily on intrinsic mechanisms within satellite cells. As such, this model of myofiber β-catenin knockout may significantly contribute to better understanding of the mechanisms of satellite cell priming, with implications for regenerative medicine.
28

Wnt/β-Catenin Signalling in Parathyroid Tumours

Björklund, Peyman January 2007 (has links)
<p>Primary hyperparathyroidism (pHPT) due to parathyroid tumours with hypersecretion of parathyroid hormone and hypercalcaemia is a common disease with incompletely understood etiology affecting more than 1 % of the population, primarily postmenopausal women. In secondary hyperparathyroidism (sHPT), parathyroid tumours develop in response to calcium and vitamin D deficiency generally in patients with uraemia. HPT is usually treated by surgical removal of enlarged parathyroid glands.</p><p>The aim of this thesis was to examine the Wnt/β-catenin signalling pathway in parathyroid tumours.</p><p>Aberrantly accumulated β-catenin was found in all analysed pHPT and sHPT tumours, with a stabilising homozygous mutation (Ser37Ala) in 7.3% of the pHPT tumours. Truncation of the APC protein was not found. MYC, a β-catenin target gene was overexpressed in a substantial fraction of pHPT and sHPT parathyroid tumours. </p><p>A parathyroid tumour cell line (sHPT-1) was established from a hyperplastic gland removed at operation of a patient with sHPT. The cells produced parathyroid hormone and grew with a doubling time of approximately 72 hours. Stabilised nonphosphorylated transcriptionally active β-catenin was expressed. Efficient transfection of siRNA against β-catenin decreased expression of cyclin D1 and MYC, and inhibited cell growth with ensuring cell death. </p><p>The Wnt coreceptor LRP5 was found expressed with an internal deletion of 142 amino acids (LRP5Δ) in 86% and 100% of pHPT and sHPT tumours, respectively. Stabilising mutation of β-catenin and expression of LRP5Δ was mutually exclusive. Expression of LRP5Δ was required to maintain the nonphosphorylated transcriptionally active ß-catenin level, MYC expression, parathyroid cell growth in vitro, and tumour growth in transplanted SCID mice. Wnt3 ligand and LRP5Δ strongly activated transcription, and LRP5Δ was insensitive to inhibition by DKK1.</p><p>Aberrant accumulation of β-catenin by stabilising mutation or expression of LRP5Δ appears as a common pathogenic pathway for hyperparathyroid disease. LRP5Δ in particular presents a potential target for therapeutic intervention.</p>
29

Wnt/β-Catenin Signalling in Parathyroid Tumours

Björklund, Peyman January 2007 (has links)
Primary hyperparathyroidism (pHPT) due to parathyroid tumours with hypersecretion of parathyroid hormone and hypercalcaemia is a common disease with incompletely understood etiology affecting more than 1 % of the population, primarily postmenopausal women. In secondary hyperparathyroidism (sHPT), parathyroid tumours develop in response to calcium and vitamin D deficiency generally in patients with uraemia. HPT is usually treated by surgical removal of enlarged parathyroid glands. The aim of this thesis was to examine the Wnt/β-catenin signalling pathway in parathyroid tumours. Aberrantly accumulated β-catenin was found in all analysed pHPT and sHPT tumours, with a stabilising homozygous mutation (Ser37Ala) in 7.3% of the pHPT tumours. Truncation of the APC protein was not found. MYC, a β-catenin target gene was overexpressed in a substantial fraction of pHPT and sHPT parathyroid tumours. A parathyroid tumour cell line (sHPT-1) was established from a hyperplastic gland removed at operation of a patient with sHPT. The cells produced parathyroid hormone and grew with a doubling time of approximately 72 hours. Stabilised nonphosphorylated transcriptionally active β-catenin was expressed. Efficient transfection of siRNA against β-catenin decreased expression of cyclin D1 and MYC, and inhibited cell growth with ensuring cell death. The Wnt coreceptor LRP5 was found expressed with an internal deletion of 142 amino acids (LRP5Δ) in 86% and 100% of pHPT and sHPT tumours, respectively. Stabilising mutation of β-catenin and expression of LRP5Δ was mutually exclusive. Expression of LRP5Δ was required to maintain the nonphosphorylated transcriptionally active ß-catenin level, MYC expression, parathyroid cell growth in vitro, and tumour growth in transplanted SCID mice. Wnt3 ligand and LRP5Δ strongly activated transcription, and LRP5Δ was insensitive to inhibition by DKK1. Aberrant accumulation of β-catenin by stabilising mutation or expression of LRP5Δ appears as a common pathogenic pathway for hyperparathyroid disease. LRP5Δ in particular presents a potential target for therapeutic intervention.
30

p63 and potential p63 targets in squamous cell carcinoma of the head and neck

Boldrup, Linda January 2008 (has links)
Squamous cell carcinoma of the head and neck (SCCHN), the 6th most common cancer worldwide, has a low 5-year survival. Disease as well as treatment often causes patients severe functional and aesthetic problems. In order to improve treatment and diagnosis at earlier stages of tumour development it is important to learn more about the molecular mechanisms behind the disease. p63, an important regulator of epithelial formation, has been suggested to play a role in the development of SCCHN. Six different isoforms of p63 have been found and shown to have various functions. The aim of the studies in this thesis was to learn more about the role of p63 and proteins connected to p63 in SCCHN. Expression of p63, Cox-2, EGFR, beta-catenin, PP2A and p53 isoforms was mapped in tumours and normal tumour adjacent tissue from patients with SCCHN using western blot or RT-PCR. Results showed no significant difference between tumours and normal tumour adjacent tissue concerning expression of EGFR and beta-catenin. Cox-2 and PP2A showed significantly higher expression in tumours while p63 was more expressed in normal tumour adjacent tissue. However, expression of all these proteins in normal tumour adjacent tissue differed from tissue from disease-free non-smoking individuals. Smoking in itself did not affect expression of these proteins. The p53 isoforms p53, p53beta, p53gamma, ∆133p53, ∆133p53beta and ∆133p53gamma were expressed at RNA level in samples both from tumours and normal tumour adjacent tissue, though most of them at fairly low levels. The functional properties of the different p63 isoforms have not been fully mapped. By establishing stable cell lines over-expressing the different p63 isoforms we investigated their specific effect on tumour cells from SCCHN. Only the ∆Np63 isoforms could be stably over-expressed, whereas no clones over-expressing TAp63 could be established. Using microarray technique, cell lines stably expressing the ∆Np63 isoforms were studied and CD44, Keratins 4, 6, 14, 19 and Cox-2 were found to be regulated by p63. In conclusion, the present project adds new data to the field of p63 and SCCHN. For example, we have shown that clinically normal tumour adjacent tissue is altered compared to normal oral mucosa in non tumour patients, and that smoking does not change expression of p63, Cox-2, EGFR, beta-catenin or PP2A in oral mucosa. Novel p53 isoforms are expressed in SCCHN, and even though levels are very low they should not be overlooked. Furthermore, CD44, keratins 4, 6, 14, 19 and Cox-2 were identified as p63 targets in SCCHN.

Page generated in 0.0665 seconds