• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Προσδιορισμός του λόγου ισοδυναμίας σε προαναμεμιγμένη φλόγα μεθανίου αέρα με την μέθοδο LIBS

Διακουμή, Βασιλική 18 February 2010 (has links)
- / -
2

Ανάπτυξη ολοκληρωμένου συστήματος για προεπεξεργασία και αναγνώριση προτύπων από δεδομένα πρωτεωμικής

Ραψομανίκη, Μαρία Άννα 02 February 2011 (has links)
Οι ραγδαίες εξελίξεις στη Φασματομετρία Μάζας και η εισαγωγή νέων πειραματικών τεχνικών ιονισμού, όπως οι τεχνικές Matrix-Assisted Laser Desorption Ionization (MALDI) και Surface-Enhanced Laser Desorption Ionization (SELDI) έχει καταστήσει δυνατή τη μελέτη των επιπέδων της πρωτεϊνικής έκφρασης σε σύνθετα μείγματα πρωτεϊνών από διάφορα βιολογικά δείγματα, όπως serum, πλάσμα και ούρα. Τα δεδομένα που προκύπτουν από αυτές τις τεχνολογίες μπορούν να χρησιμοποιηθούν για την αναγνώριση πρωτεϊνικών προτύπων, τα οποία θα μπορούν επιτυχώς να διαχωρίζουν καταστάσεις (π.χ. υγιής – ασθενής) καθώς και για την ανακάλυψη νέων πιθανών βιοδεικτών (biomarkers). Αυτά τα πρότυπα έχουν υψηλή διαγνωστική σημασία, καθώς μπορούν να χρησιμοποιηθούν για έγκαιρη διάγνωση, πρόγνωση, παρακολούθηση της εξέλιξης μιας ασθένειας ή της απόδοσης μιας συγκεκριμένης θεραπείας. Αυτή η στρατηγική έχει ήδη χρησιμοποιηθεί σε διάφορους τύπους καρκίνου, όπως ωοθηκών, μαστού και προστάτη, δίνοντας πολύ ενδιαφέροντα αποτελέσματα. Παρόλα αυτά, η σύνθετη φύση των πρωτεϊνικών δεδομένων κάνει την ανάλυση τους αρκετά απαιτητική, καθώς τα αρχικά, ακατέργαστα δεδομένα είναι πολύ δύσκολο να επεξεργαστούν. Πιο συγκεκριμένα, τα δεδομένα που ανακτώνται μετά από ένα πείραμα Φασματομετρίας Μάζας περιέχουν κάποιες εκατοντάδες δείγματα (δηλαδή φάσματα μάζας) και σε κάθε δείγμα αντιστοιχούν δεκάδες χιλιάδες χαρακτηριστικά. Επιπρόσθετα με το πρόβλημα των μεγάλων διαστάσεων και ταυτόχρονα λίγων δειγμάτων, κάθε φάσμα περιέχει σημαντικό ποσοστό θορύβου και τεχνουργημάτων, κυρίως εξαιτίας της υψηλής ευαισθησίας του μηχανήματος, της επιμόλυνση του δείγματος αλλά και διαφόρων ηλεκτρικών πηγών θορύβου. Ένα άλλο κοινό πρόβλημα είναι η λάθος βαθμονόμηση (calibration) των φασμάτων, που καθιστά τα δεδομένα αδύνατον να συγκριθούν. Για όλους αυτούς τους λόγους, είναι παραπάνω από προφανές ότι για να καταφέρουμε να εξάγουμε γνώση σχετικά με τις πραγματικές υποκείμενες βιολογικές διαφοροποιήσεις του πρωτεώματος πρέπει να εκτελέσουμε διάφορα βήματα προεπεξεργασίας. Ο βασικός στόχος της προεπεξεργασίας είναι η δημιουργία ενός πίνακα που θα περιέχει τα σημαντικά χαρακτηριστικά (δηλαδή τις κορυφές) και τις αντίστοιχες τιμές έντασης, ο οποίος θα αναλυθεί περαιτέρω χρησιμοποιώντας μια ποικιλία υπολογιστικών μεθόδων. Για να επιτύχουμε κάτι τέτοιο, πρέπει αρχικά να αφαιρέσουμε το θόρυβο, τα τεχνουργήματα και τη συστηματική απόκλιση χωρίς απώλεια πληροφορίας και έπειτα να ανιχνεύσουμε και να ποσοτικοποιήσουμε ένα σύνολο κορυφών. Η προεπεξεργασία περιλαμβάνει ένα σύνολο βημάτων τα οποία αλληλεπιδρούν μεταξύ τους και έχει δειχθεί ότι αν δεν εφαρμοστεί προσεκτικά θα είναι πολύ δύσκολο να εξαχθούν συμπεράσματα για την υποκείμενη ασθένεια. Η επιλογή του καλύτερου συνδυασμού μεθόδων είναι ιδιαίτερα δύσκολη, καθώς για κάθε βήμα έχουν προταθεί αρκετές εναλλακτικές μέθοδοι. Επιπλέον, είναι δύσκολο να αποτιμηθεί η απόδοση κάθε μεθόδου και να προταθεί μια μοναδική στρατηγική, καθώς για κάθε σύνολο δεδομένων προκύπτει και διαφορετικός συνδυασμός ως πιο κατάλληλος. Στα πλαίσια της παρούσας διπλωματικής εργασίας δημιουργήθηκε ένα ολοκληρωμένο σύστημα ανάλυσης πρωτεϊνικών δεδομένων, το οποίο ενσωματώνει μια καινούρια μέθοδο προεπεξεργασίας πρωτεϊνικών δεδομένων. Η μέθοδος αυτή αντιμετωπίζει τα προβληματικά χαρακτηριστικά αυτού του τύπου δεδομένων και εκμεταλλεύεται τα πλεονεκτήματα διάφορων γνωστών μεθόδων. Πιο συγκεκριμένα, η στρατηγική που προτείνουμε εστιάζει σε τρία σημαντικά προβλήματα: τη διόρθωση των λαθών της βαθμονόμησης, την ανίχνευση των κορυφών με ευαίσθητο αλλά και σταθερό τρόπο και την ακριβή ποσοτικοποίηση κάθε κορυφής. Η ανίχνευση κορυφής πραγματοποιήθηκε μέσω μιας μεθόδου βασισμένης στη λογική της χρήσης του μέσου φάσματος, όπου πρώτα ανιχνεύουμε τις κορυφές ανά κατηγορία, έπειτα εφαρμόζουμε διάφορα κριτήρια αποκοπής για να βεβαιώσουμε την αναπαραγωγιμότητα τους και μετά τις συνενώνουμε σε ένα σύνολο κορυφών, κοινό για όλες τις κατηγορίες. Αντί να χρησιμοποιούμε συγκεκριμένες θέσεις για κάθε κορυφή, προτείνουμε τη χρήση διαστημάτων κορυφής, έτσι ώστε να βεβαιώσουμε ότι οι μικρές αποκλίσεις δε δημιουργούν σφάλματα στην ποσοτικοποίηση. Για να αποτιμήσουμε τα αποτελέσματα της μεθόδου μας, στα δεδομένα που προέκυψαν μετά την προεπεξεργασία εφαρμόστηκε ένα τελικό βήμα επιλογής χαρακτηριστικών και ταξινόμησης, με χρήση του αλγορίθμου ταξινόμησης Support Vector Machines. Η προτεινόμενη μέθοδος μας εφαρμόστηκε σε ένα σύνολο MALDI MS δεδομένων, το οποίο μας παρείχε η Ερευνητική Μονάδα Πρωτεωμικής του Ιδρύματος Ιατροβιολογικών Εφαρμογών Ακαδημίας Αθηνών (ΙΙΒΕΑΑ). Το συγκεκριμένο σύνολο δεδομένων περιέχει 200 περίπου δείγματα από ασθενείς με καρκίνο ουροδόχου κύστεως (υψηλού ή χαμηλού βαθμού) ή καλοήθη ασθένεια. Μετά την εφαρμογή της προτεινόμενης μεθόδου, καταλήξαμε σε έναν πίνακα 456 κορυφών και αντίστοιχων εντάσεων. Η εφαρμογή του βήματος της ταξινόμησης πέτυχε πολύ υψηλά ποσοστά ακρίβειας, ευαισθησίας και ειδικότητας. Επιπλέον, αναγνωρίστηκαν 31 στατιστικά σημαντικά χαρακτηριστικά, μερικά από τα οποία δεν ανιχνεύονται από τις υπάρχουσες μεθόδους. / The rapid developments in mass spectrometry (MS) and the introduction of new experimental ionization methods, like matrix-assisted laser desorption ionization (MALDI) and surface-enhanced laser desorption ionization (SELDI), has made it possible to study protein expression levels in complex mixtures of proteins from various biological samples, like serum plasma and urine. The data generated from these technologies can be used to identify proteomic patterns that can successfully separate states (e.g. normal versus disease) and possibly discover novel disease biomarkers. Those patterns have high diagnostic significance, as they can be used for early diagnosis, prognosis, monitoring disease progression or therapeutic response. This strategy has already been used in various types of cancer, like ovarian, breast and prostate cancer, giving interesting results. However, the complex nature of proteomics data makes their analysis a challenging task, as the initial raw data are very difficult to handle. More specifically, the data retrieved after an MS experiment contain hundreds of samples (i.e. mass spectra), and in each sample correspond tens of thousands of features. In addition to this high dimensionality – small sample size problem, each spectrum contains a great amount of noise and artifacts, mostly due to the high sensitivity of the instrument, sample contamination and electrical noise. Another common problem is the miscalibration of the spectra that makes the data impossible to compare. For all those reasons, it is more than obvious that in order to extract knowledge about the true underlying biological differences in the proteome, various preprocessing steps need to be applied. The main goal of preprocessing is to come up with a matrix of important features (i.e. peaks) and their corresponding intensity values, which can be further analyzed using a variety of computational methods. To achieve this, one must first remove noise, artifacts and systematic bias without loss of information and then detect and quantify a set of peaks. Preprocessing involves various steps that are highly interrelated and it has been shown that if those steps are not applied carefully, it will be difficult to extract meaningful conclusions about the underlying disease. For each step, a number of methods have been proposed making the decision about the best combination of methods a very challenging task. Furthermore, it is difficult to evaluate the performance of each method and come up with a standard strategy, as for each dataset a different set of methods appear to be more effective. This thesis presents a new pipeline method for the analysis of proteomics data, which incorporates a new preprocessing method. This proposed method deals with the problematic characteristics of this type of data and exploits the advantages of various existing methods. More specifically, our proposed strategy focuses on three main problems: correcting the miscalibration of the mass spectra, detecting the peaks in a sensitive yet robust manner and extracting the true intensity values that correspond in each peak. For the peak finding step, we used a method based on the mean spectrum approach, where we first find the peaks per category, then apply certain criteria to ensure their reproducibility and then combine them in a single peak list. Instead of working with peak locations, we propose the use of peak intervals, to ensure that the small shifts present in the data do not interfere with the final results. In order to evaluate the results of our method, a final feature extraction and classification step was applied in the preprocessed data, using the Support Vector Machines classification algorithm. Our proposed pipeline method was applied in a MALDI MS dataset, obtained by the Proteomics Research Unit of the Biomedical Research Foundation. This particular dataset contained approximately 200 samples, concerning patients with bladder cancer (high or low grade) and benign bladder disease. After the application of the proposed preprocessing method we ended up with a matrix of 456 peak bins and corresponding intensities. The application of the classification algorithm achieved extremely high performance in terms of accuracy, sensitivity and specificity. Furthermore, 31 statistically important peaks were identified, some of which are not detected by existing methods.
3

Ανάπτυξη αναλυτικών μεθόδων για τη μελέτη βιοδραστικών συστατικών του είδους Olea europaea και των αλληλεπιδράσεων αυτών των ουσιών με πεπτίδια

Μπαζώτη, Φωτεινή Ν. 10 February 2009 (has links)
- / -
4

Usage of aerosol mass spectrometry for the measurement of the physical and chemical properties of the atmospheric nanoparticles / Χρήση της φασματομετρίας μάζας αεροζόλ για τη μέτρηση των φυσικών και χημικών ιδιοτήτων των ατμοσφαιρικών νανοσωματιδίων

Κωστενίδου, Ευαγγελία 13 July 2010 (has links)
The Aerosol Mass Spectroscopy (AMS) is a recently developed method that provides on-line measurements of the chemical composition, mass spectrum and mass distributions of the atmospheric aerosol. Using the AMS with a thermodenuder in smog chamber experiments of ozonolysis of α-pinene, β-pinene and limonene, the mass spectrum of the secondary organic aerosols (SOA) is deconvoluted in low, medium and high volatility mass spectra. The spectrum of the surrogate component with the lower volatility for α-pinene and β-pinene is quite similar to that of ambient oxygenated organic aerosol (OOA). This could explain part of the difference between the AMS mass spectrum in the lab and the field. Combining an AMS and a Scanning Mobility Particle Sizer (SMPS) in smog chamber experiments of α-pinene, β-pinene and limonene ozonolysis, the density of the SOA is calculated and estimated between 1.4 and 1.65 g cm-3. This high density implies that the SOA is likely in a solid or a waxy state. The method is applied on field measurements at Finokalia, Crete during the FAME. For the summer campaign (FAME-08) the organic density is in the range of 0.8 and 1.8 g cm-3 with a mean value of 1.35±0.22 g cm-3¬, while for the winter (FAME-09) the average organic density is 1.14±0.36 g cm-3. This technique can also calculate the Collection Efficiency (CE) of the AMS, since AMS does not measure all the particles that enter the instrument. Applying the estimated CE, the AMS is in a good agreement with other instrumentation. The CE and the organic density of the thermodenuded samples are calculated as well. The CE and the organic density both for the ambient and the themodenuded samples are used as post corrections in the volatility estimation. For FAME-08 the organic aerosol is one order of magnitude less volatile than laboratory-generated α-pinene SOA. Furthermore they are highly oxidized due to the photochemistry conditions (especially in the summer) and the station location (away from detectable sources of pollution). Finally, modifying the steam-jet aerosol collector (SJAC) method both particulate and gas phase of the main inorganic species can be measured. Testing the approach at ambient conditions at the ICE-FORTH Institute, we were able to measure together with the inorganic aerosol composition the gas-phase concentrations of NH3, HONO and very low HNO¬3. The results are consistent with the predictions of the thermodynamic model ISORROPIA. / Τα αεροζόλ είναι σωματίδια που αιωρούνται στην ατμόσφαιρα. Η Φασματομετρία Μάζας Αεροζόλ (AMS) είναι μία νέα μέθοδος που μπορεί να δώσει ταυτόχρονα και σε πραγματικό χρόνο τη χημική σύσταση, το φάσμα μάζας και τις κατανομές μάζας των ατμοσφαιρικών σωματιδίων. Χρησιμοποιώντας το AMS με έναν θερμικό απογυμνωτή σε πειράματα οζονόλυσης α-πινενίου, β-πινενίου και λεμονενίου σε περιβαλλοντικό θάλαμο, το φάσμα μάζας των δευτερογενών οργανικών σωματιδίων (SOΑ) αναλύεται σε 3 επιμέρους φάσματα, ανάλογα με την πτητικότητα των οργανικών σωματιδίων. Το φάσμα που αντιστοιχεί στις ενώσεις με τη χαμηλότερη πτητικότητα για το α- και β-πινένιο είναι αρκετά όμοιο με αυτό των οξυγονωμένων οργανικών σωματιδίων (ΟΟΑ) από το περιβάλλον. Αυτό εξηγεί και μέρος της διαφοράς του φάσματος μάζας AMS μεταξύ εργαστηρίου και πεδίου. Συνδυάζοντας το AMS με ένα σαρωτή μεγέθους κινούμενων σωματιδίων (SMPS) υπολογίζεται η πυκνότητα των SOA από οζονόλυση α-πινενίου, β-πινενίου και λεμονενίου μεταξύ 1.4 και 1.65 g cm-3. Η σχετικά υψηλή τιμή της πυκνότητας μάλλον σημαίνει ότι τα παραγόμενα σωματίδια είναι στερεά ή κερώδη.Η παραπάνω μέθοδος εφαρμόζεται σε μετρήσεις πεδίου στη Φινοκαλιά, στην Κρήτη (FAME). Για το FAME-08 (καλοκαίρι) η πυκνότητα των οργανικών σωματιδίων είναι μεταξύ 0.8 και 1.8 g cm-3 με μέση τιμή 1.35±0.22 g cm-3, ενώ για το FAME-09 (χειμώνας) η μέση τιμή είναι 1.14±0.36 g cm-3. Η τεχνική αυτή υπολογίζει και το ποσοστό συλλογής (CE) σωματιδίων του AMS, καθώς το AMS μετράει ένα ποσοστό αυτών. Εφαρμόζοντας την CE που υπολογίζεται, η συμφωνία μεταξύ του AMS και άλλων οργάνων είναι αρκετά καλή. Υπολογίζεται επίσης η CE και η πυκνότητα των οργανικών για τα δείγματα που έχουν θερμανθεί στον θερμικό απογυμνωτή. Οι CE και οι οργανικές πυκνότητες χρησιμοποιούνται ως διορθώσεις για την αποφυγή υποεκτίμησης της πτητικότητας του οργανικού αεροζόλ. Για το FAME-08 οι οργανικές ενώσεις είναι περισσότερο από μία τάξη μεγέθους λιγότερο πτητικές από τα SOA που δημιουργούνται σε συνθήκες εργαστηρίου. Επίσης είναι υψηλά οξειδωμένες λόγω της φωτοχημείας (καλοκαίρι) και της τοποθεσίας της δειγματοληψίας (μακριά από πρωτογενείς ρύπους). Τέλος τροποποιώντας τη μέθοδο δειγματοληψίας υγροποιημένων σωματιδίων (SJAC) είναι δυνατό να μετρηθεί και η σωματιδιακή αλλά και η αέρια φάση των κυρίως ανόργανων ενώσεων. Πειράματα που έγιναν από δειγματοληψία στο ΕΙΧΗΜΥΘ δείχνουν την ύπαρξη ΝΗ3 αλλά σχεδόν μηδενικού ΗΝΟ3. Τα αποτελέσματα συγκρίνονται με ένα θερμοδυναμικό μοντέλο (ISΟRROPIA) και η συμφωνία είναι καλή.

Page generated in 0.0412 seconds