• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la dynamique symbolique des développements en base négative, système de Lyndon / Study of the symbolic dynamics of expansions in negative base, Lyndon system

Nguema Ndong, Florent 26 September 2013 (has links)
Ce travail est consacré à l'étude de systèmes de Lyndon (pour la relation d'ordre alterné) et àla dynamique symbolique des développements des nombres en base négative. Pour un réel ß > 1fixé, nous construisons un code préfixe récurrent positif permettant non seulement de montrerl'intrinsèque ergodicité du —ß-shift mais aussi de déterminer la fonction zêta qui lui est associée.Nous étudions les conditions pour lesquelles le —ß-shift possède la spécification.En outre, lorsque ß est strictement plus petit que le nombre d'or, le langage du —ß-shift admet desmots intransitifs. Cet état de fait engendre dans le système dynamique des cylindres négligeablespar rapport à la mesure d'entropie maximale. Ces cylindres génèrent sur Iß=[—ß/(ß+1),1/(ß+1)[ depetits intervalles de mesure nulle (la mesure considérée étant l'unique mesure ergodique sur Iß).Nous en faisons une étude détaillée, en particulier nous déterminons ces intervalles "trous".Par ailleurs, nous étudions l'unicité des systèmes de numération des entiers relatifs en base négative et nous montrons qu'à chaque mot de Lyndon correspond un tel système. / This work deals with the study of the Lyndon systems (for alternate order) and the symbolicdynamics of the expansions of real numbers in negative base. For a given real ß > 1, we showthe intrinsic ergodicity of the —ß-shift using a positive recurring prefix code and we determine theassociated zeta function. We study the conditions for which the —ß-shift admits the specificationproperty.Moreover, when ß is less than golden ratio, the language of the —ß-shift contains intransitive words.These words lead to some cylinders negligible with respect to the measure with maximal entropy.In the interval Iß=[—ß/(ß+1),1/(ß+1)[, these cylinders correspond to some gaps: small interval withmeasure zero (with respect to the unique ergodic measure on Iß). We make a detailed study ofthese gaps.Otherwise, we study the uniqueness of the number systems of integers in negative base and weshow that to each Lyndon word corresponds to a such system.

Page generated in 0.0435 seconds