• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 9
  • 6
  • 5
  • 1
  • Tagged with
  • 96
  • 96
  • 35
  • 33
  • 28
  • 27
  • 27
  • 19
  • 16
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Scalable view-based techniques for web data : algorithms and systems

Katsifodimos, Asterios 03 July 2013 (has links) (PDF)
XML was recommended by W3C in 1998 as a markup language to be used by device- and system-independent methods of representing information. XML is nowadays used as a data model for storing and querying large volumes of data in database systems. In spite of significant research and systems development, many performance problems are raised by processing very large amounts of XML data. Materialized views have long been used in databases to speed up queries. Materialized views can be seen as precomputed query results that can be re-used to evaluate (part of) another query, and have been a topic of intensive research, in particular in the context of relational data warehousing. This thesis investigates the applicability of materialized views techniques to optimize the performance of Web data management tools, in particular in distributed settings, considering XML data and queries. We make three contributions.We first consider the problem of choosing the best views to materialize within a given space budget in order to improve the performance of a query workload. Our work is the first to address the view selection problem for a rich subset of XQuery. The challenges we face stem from the expressive power and features of both the query and view languages and from the size of the search space of candidate views to materialize. While the general problem has prohibitive complexity, we propose and study a heuristic algorithm and demonstrate its superior performance compared to the state of the art.Second, we consider the management of large XML corpora in peer-to-peer networks, based on distributed hash tables (or DHTs, in short). We consider a platform leveraging distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. This thesis has contributed important scalability oriented optimizations, as well as a comprehensive set of experiments deployed in a country-wide WAN. These experiments outgrow by orders of magnitude similar competitor systems in terms of data volumes and data dissemination throughput. Thus, they are the most advanced in understanding the performance behavior of DHT-based XML content management in real settings.Finally, we present a novel approach for scalable content-based publish/subscribe (pub/sub, in short) in the presence of constraints on the available computational resources of data publishers. We achieve scalability by off-loading subscriptions from the publisher, and leveraging view-based query rewriting to feed these subscriptions from the data accumulated in others. Our main contribution is a novel algorithm for organizing subscriptions in a multi-level dissemination network in order to serve large numbers of subscriptions, respect capacity constraints, and minimize latency. The efficiency and effectiveness of our algorithm are confirmed through extensive experiments and a large deployment in a WAN.
52

Answering Object Queries over Knowledge Bases with Expressive Underlying Description Logics

Wu, Jiewen January 2013 (has links)
Many information sources can be viewed as collections of objects and descriptions about objects. The relationship between objects is often characterized by a set of constraints that semantically encode background knowledge of some domain. The most straightforward and fundamental way to access information in these repositories is to search for objects that satisfy certain selection criteria. This work considers a description logics (DL) based representation of such information sources and object queries, which allows for automated reasoning over the constraints accompanying objects. Formally, a knowledge base K=(T, A) captures constraints in the terminology (a TBox) T, and objects with their descriptions in the assertions (an ABox) A, using some DL dialect L. In such a setting, object descriptions are L-concepts and object identifiers correspond to individual names occurring in K. Correspondingly, object queries are the well known problem of instance retrieval in the underlying DL knowledge base K, which returns the identifiers of qualifying objects. This work generalizes instance retrieval over knowledge bases to provide users with answers in which both identifiers and descriptions of qualifying objects are given. The proposed query paradigm, called assertion retrieval, is favoured over instance retrieval since it provides more informative answers to users. A more compelling reason is related to performance: assertion retrieval enables a transfer of basic relational database techniques, such as caching and query rewriting, in the context of an assertion retrieval algebra. The main contributions of this work are two-fold: one concerns optimizing the fundamental reasoning task that underlies assertion retrieval, namely, instance checking, and the other establishes a query compilation framework based on the assertion retrieval algebra. The former is necessary because an assertion retrieval query can entail a large volume of instance checking requests in the form of K|= a:C, where "a" is an individual name and "C" is a L-concept. This work thus proposes a novel absorption technique, ABox absorption, to improve instance checking. ABox absorption handles knowledge bases that have an expressive underlying dialect L, for instance, that requires disjunctive knowledge. It works particularly well when knowledge bases contain a large number of concrete domain concepts for object descriptions. This work further presents a query compilation framework based on the assertion retrieval algebra to make assertion retrieval more practical. In the framework, a suite of rewriting rules is provided to generate a variety of query plans, with a focus on plans that avoid reasoning w.r.t. the background knowledge bases when sufficient cached results of earlier requests exist. ABox absorption and the query compilation framework have been implemented in a prototypical system, dubbed CARE Assertion Retrieval Engine (CARE). CARE also defines a simple yet effective cost model to search for the best plan generated by query rewriting. Empirical studies of CARE have shown that the proposed techniques in this work make assertion retrieval a practical application over a variety of domains.
53

Gestion de flux de données pour l'observation de systèmes / Data stream management for systems monitoring

Petit, Loïc 10 December 2012 (has links)
La popularisation de la technologie a permis d'implanter des dispositifs et des applications de plus en plus développés à la portée d'utilisateurs non experts. Ces systèmes produisent des flux ainsi que des données persistantes dont les schémas et les dynamiques sont hétérogènes. Cette thèse s'intéresse à pouvoir observer les données de ces systèmes pour aider à les comprendre et à les diagnostiquer. Nous proposons tout d'abord un modèle algébrique Astral capable de traiter sans ambiguïtés sémantiques des données provenant de flux ou relations. Le moteur d'exécution Astronef a été développé sur l'architecture à composants orientés services pour permettre une grande adaptabilité. Il est doté d'un constructeur de requête permettant de choisir un plan d'exécution efficace. Son extension Asteroid permet de s'interfacer avec un SGBD pour gérer des données persistantes de manière intégrée. Nos contributions sont confrontées à la pratique par la mise en œuvre d'un système d'observation du réseau domestique ainsi que par l'étude des performances. Enfin, nous nous sommes intéressés à la mise en place de la personnalisation des résultats dans notre système par l'introduction d'un modèle de préférences top-k. / Due to the popularization of technology, non-expert people can now use more and more advanced devices and applications. Such systems produce data streams as well as persistent data with heterogeneous schemas and dynamics. This thesis is focused on monitoring data coming from those systems to help users to understand and to perform diagnosis on them. We propose an algebraic model Astral able to treat data coming from streams or relations without semantic ambiguity. The engine Astronef has been developed on top of a service-oriented component framework to enable a large adaptability. It embeds a query builder which can select a composition of components to provide an efficient query plan. Its extension Asteroid interfaces with a DBMS in order to manage persistent data in an integrated manner. Our contributions have been confronted to practice with the deployment of a monitoring system for the digital home and with a performance study. Finally, we extend our approach with an operator to personalize the results by introducing a top-k preference model.
54

Declarative parallel query processing on large scale astronomical databases / Traitement parallèle et déclaratif de requêtes sur des masses de données issues d'observations astronomiques

Mesmoudi, Amin 03 December 2015 (has links)
Les travaux de cette thèse s'inscrivent dans le cadre du projet Petasky. Notre objectif est de proposer des outils permettant de gérer des dizaines de Peta-octets de données issues d'observations astronomiques. Nos travaux se focalisent essentiellement sur la conception des nouveaux systèmes permettant de garantir le passage à l'échelle. Dans cette thèse, nos contributions concernent trois aspects : Benchmarking des systèmes existants, conception d'un nouveau système et optimisation du système. Nous avons commencé par analyser la capacité des systèmes fondés sur le modèle MapReduce et supportant SQL à gérer les données LSST et leurs capacités d'optimisation de certains types de requêtes. Nous avons pu constater qu'il n'y a pas de technique « magique » pour partitionner, stocker et indexer les données mais l'efficacité des techniques dédiées dépend essentiellement du type de requête et de la typologie des données considérées. Suite à notre travail de Benchmarking, nous avons retenu quelques techniques qui doivent être intégrées dans un système de gestion de données à large échelle. Nous avons conçu un nouveau système de façon à garantir la capacité dudit système à supporter plusieurs mécanismes de partitionnement et plusieurs opérateurs d'évaluation. Nous avons utilisé BSP (Bulk Synchronous Parallel) comme modèle de calcul. Les données sont représentées logiquement par des graphes. L'évaluation des requêtes est donc faite en explorant le graphe de données en utilisant les arcs entrants et les arcs sortants. Les premières expérimentations ont montré que notre approche permet une amélioration significative des performances par rapport aux systèmes Map/Reduce / This work is carried out in framework of the PetaSky project. The objective of this project is to provide a set of tools allowing to manage Peta-bytes of data from astronomical observations. Our work is concerned with the design of a scalable approach. We first started by analyzing the ability of MapReduce based systems and supporting SQL to manage the LSST data and ensure optimization capabilities for certain types of queries. We analyzed the impact of data partitioning, indexing and compression on query performance. From our experiments, it follows that there is no “magic” technique to partition, store and index data but the efficiency of dedicated techniques depends mainly on the type of queries and the typology of data that are considered. Based on our work on benchmarking, we identified some techniques to be integrated to large-scale data management systems. We designed a new system allowing to support multiple partitioning mechanisms and several evaluation operators. We used the BSP (Bulk Synchronous Parallel) model as a parallel computation paradigm. Unlike MapeReduce model, we send intermediate results to workers that can continue their processing. Data is logically represented as a graph. The evaluation of queries is performed by exploring the data graph using forward and backward edges. We also offer a semi-automatic partitioning approach, i.e., we provide the system administrator with a set of tools allowing her/him to choose the manner of partitioning data using the schema of the database and domain knowledge. The first experiments show that our approach provides a significant performance improvement with respect to Map/Reduce systems
55

Principles for Distributed Databases in Telecom Environment / Principer för distribuerade databaser inom Telecom Miljö

Ashraf, Imran, Khokhar, Amir Shahzed January 2010 (has links)
Centralized databases are becoming bottleneck for organizations that are physically distributed and access data remotely. Data management is easy in centralized databases. However, it carries high communication cost and most importantly high response time. The concept of distributing the data over various locations is very attractive for such organizations. In such cases the database is fragmented into fragments and distributed to the locations where it is needed. This kind of distribution provides local control of data and the data access is also very fast in such databases. However, concurrency control, query optimization and data allocations are the factors that affect the response time and must be investigated prior to implementing distributed databases. This thesis makes the use of mixed method approach to meet its objective. In quantitative section, we performed an experiment to compare the response time of two databases; centralized and fragmented/distributed. The experiment was performed at Ericsson. A literature review was also done to find out other important response time related issues like query optimization, concurrency control and data allocation. The literature review revealed that these factors can further improve the response time in distributed environment. Results of the experiment showed a substantial decrease in the response time due to the fragmentation and distribution. / Centraliserade databaser blir flaskhals för organisationer som är fysiskt distribuerade och tillgång till data på distans. Datahantering är lätt i centrala databaser. Men bär den höga kostnaden kommunikation och viktigast av hög svarstid. Konceptet att distribuera data över olika orter är mycket attraktiv för sådana organisationer. I sådana fall databasen är splittrade fragment och distribueras till de platser där det behövs. Denna typ av distribution ger lokal kontroll av uppgifter och dataåtkomst är också mycket snabb i dessa databaser. Men, samtidighet kontroll, frågeoptimering och data anslagen är de faktorer som påverkar svarstiden och måste utredas innan genomförandet distribuerade databaser. Denna avhandling gör användningen av blandade metod strategi för att nå sitt mål. I kvantitativa delen utförde vi ett experiment för att jämföra svarstid på två databaser, centraliserad och fragmenterad / distribueras. Försöket utfördes på Ericsson. En litteraturstudie har gjorts för att ta reda på andra viktiga svarstid liknande frågor som frågeoptimering, samtidighet kontroll och data tilldelning. Litteraturgenomgången visade att dessa faktorer ytterligare kan förbättra svarstiden i distribuerad miljö. Resultaten av försöket visade en betydande minskning av den svarstid på grund av splittring och distribution.
56

Graph Models For Query Focused Text Summarization And Assessment Of Machine Translation Using Stopwords

Rama, B 06 1900 (has links) (PDF)
Text summarization is the task of generating a shortened version of the original text where core ideas of the original text are retained. In this work, we focus on query focused summarization. The task is to generate the summary from a set of documents which answers the query. Query focused summarization is a hard task because it expects the summary to be biased towards the query and at the same time important concepts in the original documents must be preserved with high degree of novelty. Graph based ranking algorithms which use biased random surfer model like Topic-sensitive LexRank have been applied to query focused summarization. In our work, we propose look-ahead version of Topic-sensitive LexRank. We incorporate the option of look-ahead in the random walk model and we show that it helps in generating better quality summaries. Next, we consider assessment of machine translation. Assessment of a machine translation output is important for establishing benchmarks for translation quality. An obvious way to assess the quality of machine translation is through the perception of human subjects. Though highly reliable, this approach is not scalable and is time consuming. Hence mechanisms have been devised to automate the assessment process. All such assessment methods are essentially a study of correlations between human translation and the machine translation. In this work, we present a scalable approach to assess the quality of machine translation that borrows features from the study of writing styles, popularly known as Stylometry. Towards this, we quantify the characteristic styles of individual machine translators and compare them with that of human generated text. The translator whose style is closest to human style is deemed to generate a higher quality translation. We show that our approach is scalable and does not require actual source text translations for evaluation.
57

Heterogeneity-Aware Placement Strategies for Query Optimization

Karnagel, Tomas 23 May 2017 (has links)
Computing hardware is changing from systems with homogeneous CPUs to systems with heterogeneous computing units like GPUs, Many Integrated Cores, or FPGAs. This trend is caused by scaling problems of homogeneous systems, where heat dissipation and energy consumption is limiting further growths in compute-performance. Heterogeneous systems provide differently optimized computing hardware, which allows different operations to be computed on the most appropriate computing unit, resulting in faster execution and less energy consumption. For database systems, this is a new opportunity to accelerate query processing, allowing faster and more interactive querying of large amounts of data. However, the current hardware trend is also a challenge as most database systems do not support heterogeneous computing resources and it is not clear how to support these systems best. In the past, mainly single operators were ported to different computing units showing great results, while missing a system wide application. To efficiently support heterogeneous systems, a systems approach for query processing and query optimization is needed. In this thesis, we tackle the optimization challenge in detail. As a starting point, we evaluate three different approaches on isolated use-cases to assess their advantages and limitations. First, we evaluate a fork-join approach of intra-operator parallelism, where the same operator is executed on multiple computing units at the same time, each execution with different data partitions. Second, we evaluate using one computing unit statically to accelerate one operator, which provides high code-optimization potential, due to this static and pre-known usage of hardware and software. Third, we evaluate dynamically placing operators onto computing units, depending on the operator, the available computing hardware, and the given data sizes. We argue that the first and second approach suffer from multiple overheads or high implementation costs. The third approach, dynamic placement, shows good performance, while being highly extensible to different computing units and different operator implementations. To automate this dynamic approach, we first propose general placement optimization for query processing. This general approach includes runtime estimation of operators on different computing units as well as two approaches for defining the actual operator placement according to the estimated runtimes. The two placement approaches are local optimization, which decides the placement locally at run-time, and global optimization, where the placement is decided at compile-time, while allowing a global view for enhanced data sharing. The main limitation of the latter is the high dependency on cardinality estimation of intermediate results, as estimation errors for the cardinalities propagate to the operator runtime estimation and placement optimization. Therefore, we propose adaptive placement optimization, allowing the placement optimization to become fully independent of cardinalities estimation, effectively eliminating the main source of inaccuracy for runtime estimation and placement optimization. Finally, we define an adaptive placement sequence, incorporating all our proposed techniques of placement optimization. We implement this sequence as a virtualization layer between the database system and the heterogeneous hardware. Our implementation approach bases on preexisting interfaces to the database system and the hardware, allowing non-intrusive integration into existing database systems. We evaluate our techniques using two different database systems and two different OLAP benchmarks, accelerating the query processing through heterogeneous execution.
58

Dynamic First Match : Reducing Resource Consumption of First Match Queries in MySQL NDB Cluster

Kumar, Hara January 2020 (has links)
Dynamic First Match is a learned heuristic that reduces the resource consumption of first match queries in a multi-threaded, distributed relational database, while having a minimal effect on latency. Traditional first match range scans occur in parallel across all data fragments simultaneously. This could potentially return many redundant results. Dynamic First Match reduced this redundancy by learning to scan only a portion of the data fragments first, before scanning the remaining fragments with a pruned data set. Benchmark tests show that Dynamic First Match could reduce resource consumption of first match queries containing first match range scans by over 40% while having a minimal effect on latency. / Dynamisk Första Match är en lärd heuristik som minskar resursförbrukningen för första match frågor i en flertrådad och distribuerad relationsdatabas, samtidigt som den har en minimal effekt på latens. Första match frågor resulterar i många intervallavsökningar. Traditionellt intervallskanningarna körs parallellt över alla datafragment samtidigt. Detta kan potentiellt ge många överflödiga resultat. Dynamisk Första Match minskade denna redundans genom att lära sig att bara skanna en del av datafragmenten innan återstående datafragmenten skannades med en beskuren datamängd. Jämförelsetester visar att Dynamisk Första Match kan minska resursförbrukningen för första match frågor med intervallavsökningar med över 40% samtidigt som den har en minimal effekt på latens.
59

Efficient exploitation of similar subexpressions for query processing

Zhou, Jingren, Larson, Per-Ake, Freytag, Johann Christoph, Lehner, Wolfgang 13 December 2022 (has links)
Complex queries often contain common or similar subexpressions, either within a single query or among multiple queries submitted as a batch. If so, query execution time can be improved by evaluating a common subexpression once and reusing the result in multiple places. However, current query optimizers do not recognize and exploit similar subexpressions, even within the same query. We present an efficient, scalable, and principled solution to this long-standing optimization problem. We introduce a light-weight and effective mechanism to detect potential sharing opportunities among expressions. Candidate covering subexpressions are constructed and optimization is resumed to determine which, if any, such subexpressions to include in the final query plan. The chosen subexpression(s) are computed only once and the results are reused to answer other parts of queries. Our solution automatically applies to optimization of query batches, nested queries, and maintenance of multiple materialized views. It is the first comprehensive solution covering all aspects of the problem: detection, construction, and cost-based optimization. Experiments on Microsoft SQL Server show significant performance improvements with minimal overhead.
60

Scalable view-based techniques for web data : algorithms and systems / Techniques efficaces basées sur des vues matérialisées pour la gestion des données du Web : algorithmes et systèmes

Katsifodimos, Asterios 03 July 2013 (has links)
Le langage XML, proposé par le W3C, est aujourd’hui utilisé comme un modèle de données pour le stockage et l’interrogation de grands volumes de données dans les systèmes de bases de données. En dépit d’importants travaux de recherche et le développement de systèmes efficace, le traitement de grands volumes de données XML pose encore des problèmes des performance dus à la complexité et hétérogénéité des données ainsi qu’à la complexité des langages courants d’interrogation XML. Les vues matérialisées sont employées depuis des décennies dans les bases de données afin de raccourcir les temps de traitement des requêtes. Elles peuvent être considérées les résultats de requêtes pré-calculées, que l’on réutilise afin d’éviter de recalculer (complètement ou partiellement) une nouvelle requête. Les vues matérialisées ont fait l’objet de nombreuses recherches, en particulier dans le contexte des entrepôts des données relationnelles.Cette thèse étudie l’applicabilité de techniques de vues matérialisées pour optimiser les performances des systèmes de gestion de données Web, et en particulier XML, dans des environnements distribués. Dans cette thèse, nos apportons trois contributions.D’abord, nous considérons le problème de la sélection des meilleures vues à matérialiser dans un espace de stockage donné, afin d’améliorer la performance d’une charge de travail des requêtes. Nous sommes les premiers à considérer un sous-langage de XQuery enrichi avec la possibilité de sélectionner des noeuds multiples et à de multiples niveaux de granularités. La difficulté dans ce contexte vient de la puissance expressive et des caractéristiques du langage des requêtes et des vues, et de la taille de l’espace de recherche de vues que l’on pourrait matérialiser.Alors que le problème général a une complexité prohibitive, nous proposons et étudions un algorithme heuristique et démontrer ses performances supérieures par rapport à l’état de l’art.Deuxièmement, nous considérons la gestion de grands corpus XML dans des réseaux pair à pair, basées sur des tables de hachage distribuées. Nous considérons la plateforme ViP2P dans laquelle des vues XML distribuées sont matérialisées à partir des données publiées dans le réseau, puis exploitées pour répondre efficacement aux requêtes émises par un pair du réseau. Nous y avons apporté d’importantes optimisations orientées sur le passage à l’échelle, et nous avons caractérisé la performance du système par une série d’expériences déployées dans un réseau à grande échelle. Ces expériences dépassent de plusieurs ordres de grandeur les systèmes similaires en termes de volumes de données et de débit de dissémination des données. Cette étude est à ce jour la plus complète concernant une plateforme de gestion de contenus XML déployée entièrement et testée à une échelle réelle.Enfin, nous présentons une nouvelle approche de dissémination de données dans un système d’abonnements, en présence de contraintes sur les ressources CPU et réseau disponibles; cette approche est mise en oeuvre dans le cadre de notre plateforme Delta. Le passage à l’échelle est obtenu en déchargeant le fournisseur de données de l’effort de répondre à une partie des abonnements. Pour cela, nous tirons profit de techniques de réécriture de requêtes à l’aide de vues afin de diffuser les données de ces abonnements, à partir d’autres abonnements.Notre contribution principale est un nouvel algorithme qui organise les vues dans un réseau de dissémination d’information multi-niveaux ; ce réseau est calculé à l’aide d’outils techniques de programmation linéaire afin de passer à l’échelle pour de grands nombres de vues, respecter les contraintes de capacité du système, et minimiser les délais de propagation des information. L’efficacité et la performance de notre algorithme est confirmée par notre évaluation expérimentale, qui inclut l’étude d’un déploiement réel dans un réseau WAN. / XML was recommended by W3C in 1998 as a markup language to be used by device- and system-independent methods of representing information. XML is nowadays used as a data model for storing and querying large volumes of data in database systems. In spite of significant research and systems development, many performance problems are raised by processing very large amounts of XML data. Materialized views have long been used in databases to speed up queries. Materialized views can be seen as precomputed query results that can be re-used to evaluate (part of) another query, and have been a topic of intensive research, in particular in the context of relational data warehousing. This thesis investigates the applicability of materialized views techniques to optimize the performance of Web data management tools, in particular in distributed settings, considering XML data and queries. We make three contributions.We first consider the problem of choosing the best views to materialize within a given space budget in order to improve the performance of a query workload. Our work is the first to address the view selection problem for a rich subset of XQuery. The challenges we face stem from the expressive power and features of both the query and view languages and from the size of the search space of candidate views to materialize. While the general problem has prohibitive complexity, we propose and study a heuristic algorithm and demonstrate its superior performance compared to the state of the art.Second, we consider the management of large XML corpora in peer-to-peer networks, based on distributed hash tables (or DHTs, in short). We consider a platform leveraging distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. This thesis has contributed important scalability oriented optimizations, as well as a comprehensive set of experiments deployed in a country-wide WAN. These experiments outgrow by orders of magnitude similar competitor systems in terms of data volumes and data dissemination throughput. Thus, they are the most advanced in understanding the performance behavior of DHT-based XML content management in real settings.Finally, we present a novel approach for scalable content-based publish/subscribe (pub/sub, in short) in the presence of constraints on the available computational resources of data publishers. We achieve scalability by off-loading subscriptions from the publisher, and leveraging view-based query rewriting to feed these subscriptions from the data accumulated in others. Our main contribution is a novel algorithm for organizing subscriptions in a multi-level dissemination network in order to serve large numbers of subscriptions, respect capacity constraints, and minimize latency. The efficiency and effectiveness of our algorithm are confirmed through extensive experiments and a large deployment in a WAN.

Page generated in 0.1127 seconds