• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

變異數估計對投資組合保險策略的績效影響評估

廖俊強 Unknown Date (has links)
本文分別以蒙地卡羅模擬分析與國內金融資料實證,秤估變異數估計對複製性賣權投資組合保險策略績效的影響。利用模擬分析之主要目的為:評估資金管理者執行投資組合保險策略時,變異數估計正確與否對保險策略績效的影響。而利用國內金融資料實證之主要目的為:比較三種估計變異數的方法,即移動平均法、極值法及異質條件變異數法,應用於投資組合保險策略上績效的差異。   研究結果顯示,在蒙地卡羅模擬分析結果中資金管理者若高估了變異數,在鎖定下方風險的能力上,並不差於變異數正確估計的結果;然而在保有上方利益的績效上,則比變異數正確估計的結果差。當要保額度越低時,上述績效的差異越明顯;同時,當無風險利率水準越低時,上述保有上方利益績效的差異也越明顯,然而鎖定下方風險績效的差異,則較無明顯變化。而資金管理者低估變異數與高估變異數則呈現相反方向的結果。   在國內金融資料實證結果中,就鎖定下方風險之績效而言,以異質條件變異數估計法的績效最佳,移動平均法次之,而極值法的績效較差;就保有上方利益績效之比較,以極值法最佳,異質條件變異數估計法次之,而移動平均估計法的績效較差。
2

固定比例投資組合保險策略動態調整乘數績效研究-運用相對強弱指標為例

金元宇 Unknown Date (has links)
由於固定比例投資組合保險策略(CPPI)能依據投資者本身的風險偏好來選定參數,並透過簡單的公式動態調整風險性資產及保留性資產的部位,以達到投資組合保險的目的,因此成為常用的投資組合保險策略之一。然而在固定乘數的選定中,僅考慮投資人的效用函數而並未考慮市場變化情況,因此投資組合的報酬往往未必為最適化之結果。   本研究以台灣股市為例,旨在討論透過技術分析指標來動態調整乘數,對固定比例投資組合保險策略之影響。實證方面以1992~2003年間台股指數作為研究標的,配合固定時點調整法及相對強弱指標來調整投資組合中風險性資產及保留性資產之投資比例。並討論動態調整與固定乘數在要保誤差、平均報酬、報酬變異、偏態、交易成本及不同市況下績效表現。
3

模擬最適化運用於資產配置之驗證 / The Effectiveness of the Asset Allocation Using the Technique of Simulation Optimization

劉婉玉 Unknown Date (has links)
本文利用模擬最適化(Simulation Optimization)的技術,來找出適合投資人之最佳資產配置。模擬最適化係為一種將決策變數輸入而使其反應變數得到最佳化結果之技術,在本篇中,決策變數為各種投資標的之資產配置,而反應變數則為投資結果之預期報酬與標準差,模擬最適化可視為一種在可行範圍內尋求最佳解之過程。本篇中模擬最適化之方法係採演化策略法,最適化問題則為具放空限制之多期架構。我們亦進一步與各種傳統的投資保險策略比較,包括買入持有策略(Buy-and-Hold)、固定比例策略(Constant Mix)、固定比例投資保險策略(Constant Proportion Portfolio Insurance)及時間不變性投資組合保險策略(Time-Invariant Portfolio Protection),以驗證模擬最適化的有效性,並以多種評估指標來衡量各種策略績效之優劣。 由實證結果發現,利用模擬最適化求解出每月的最適資產配置,雖然造成每期因資金配置比例變動而提高波動性,另一方面卻能大幅的增加報酬率。整體而言,模擬最適化技術的確能夠有效提升投資績效,使得最終財富增加,並且得到較大的夏普指數及每單位風險下較高的報酬。 / This paper applied simulation optimization technique to search for the optimal asset allocation. Simulation optimization is the process of determining the values of the decision variables that optimize the values of the stochastic response variable generated from a simulation model. The decision variables in our case are the allocations of many kinds of assets. The response variable is a function of the expected wealth and the associated risk. The simulation optimization problem can be characterized as a stochastic search over a feasible exploration region. The method we applied is the evolution strategies and the optimization problem is formulated as a multi-period one with short-sale constraints. In order to verify the effectiveness of simulation optimization, we compared the resulting asset allocation with allocations obtaining using traditional portfolio insurance strategies including Buy-and-Hold, Constant Mix, Constant Proportion Portfolio Insurance, and Time-Invariant Portfolio Protection. We also used many indexes to evaluate performance of all kinds of strategies in this paper. Our empirical results indicated that using simulation optimization to search for the best asset allocation resulted in large volatilities, however, it significantly enhanced rate of return. As a whole, applying simulation optimization indeed gets the better performance, increases the final wealth, makes Sharpe Index large, and obtains the higher return under per unit risk.

Page generated in 0.0516 seconds