1 |
馬可夫轉換基礎下技術分析:七種國內外期貨的探討 / Technical analysis based on Markov regime switching model:seven internal and external futures謝宛純 Unknown Date (has links)
雖然技術分析的爭議非常的多,在市場上卻仍然被廣泛應用,原因即是因為容易被理解且方便應用,不過當馬可夫轉換模型出現時,技術分析便面臨的挑戰。馬可夫轉換模型又稱為隨機分段趨勢模型(stochastic segmented trend model),預測方法也類似於技術分析,利用一段期間內的趨勢來判斷未來走勢。
本研究利用馬可夫轉換模型以及技術分析中相當受歡迎的移動平均轉換法相互作比較,研究標的則選擇國內的兩種期貨:臺股期貨與黃金期貨和國外的五種商品期貨:紐約黃金、布蘭特原油、芝加哥小麥、玉米和大豆共七種期貨,相互比較後,我們發現馬可夫轉換模型在樣本內的獲利績效比均線轉換法的績效要來得好,其中平滑推論又比濾嘴推論的績效好。
另外,馬可夫轉換模型在樣本外的績效並不亮眼,原因可能是估計參數的不穩定性過高,不過在臺灣黃金期貨的部分,樣本外表現也是非常的亮眼。
|
2 |
以狀態轉換模型模擬最適移動平均線組合 / Simulation of optimal moving average combination- based on regime switching model黃致穎, Huang, Chih Ying Unknown Date (has links)
學術上不接受技術分析等方法,認為股價已經在市場上充分反應,過去的歷史股價不能對未來進行預測。然而,業界或一般的投資人,卻往往把技術分析拿來做為買賣的依據。實際上以歷史資料做模擬交易,卻可以發現許多技術分析的法則在某些市場、股票、期間之中,可以獲得相對於買進賣出更好的報酬。有趣的是,任何一種操作法則或是特定一組參數選擇,在樣本外的操作則無法完全發現同樣的結果。故以技術分析所獲得的超額報酬,究竟是此機制有效還是單純運氣成分,許多技術分析的文獻以及著作往往著墨甚少。
本論文利用狀態轉換模型(Regime Switching Model)捕捉台灣加權股價指數,將股價的動態分為上漲以及下跌兩種狀態,並估計其市場參數—漲跌速度、漲跌速度標準差、轉換機率。其次將所估計的市場參數做為模擬的依據,可發現在單純隨機的環境下,某些市場參數組合存在移動平均線的交易策略明顯優於買進持有策略。研究中以敏感度分析的方法,呈現各個單一市場參數的改變情形,對於操作績效影響的方向。
最後將2001~2010的的台灣加權股價指數,估計市場參數並找尋當下最適的移動平均組合,允許每季重新調整參數,並實際以收盤價做為買賣模擬。結果發現移動平均線操作,確實能提供比買進持有更好的報酬,並減低每年報酬率變異。
|
3 |
跳躍相關風險下狀態轉換模型之股價指數 / Empirical analysis of stock indices under regime switching model with dependent jump sizes risk黃慈慧 Unknown Date (has links)
Hamilton (1989)發展出馬可夫轉換模型,假設模型母體參數會隨某一無法觀察得到的狀態變數變動而改變,並用馬可夫鏈的機制來掌控狀態間切換,可適當掌握金融與經濟變數所面臨的結構改變,因此是一個十分重要的財務模型。Schwert (1989)觀察股價波動狀況,發現經濟衰退期的股價波動比經濟擴張期大,因此認為Hamilton (1989)所提出的馬可夫轉換模型亦可應用於股票市場。然而,發現當市場上有重大訊息來臨時,大部分標的資產報酬率會產生跳躍現象,因此汪昱頡 (2008)提出跳躍風險下馬可夫轉換模型,以改善馬可夫模型所無法反映之股價不正常跳躍現象。在探討股價指數報酬率之敘述統計量與動態圖後,本文認為跳躍幅度也會受狀態影響,因此進一步拓展周家伃 (2010)跳躍獨立風險下狀態轉換模型,期望對股市報酬率動態過程提供更佳的分析。實證部分使用1999到2010年的國際股價指數之S&P500、道瓊工業指數與日經225三檔作為研究資料,來說明股價指數具有狀態轉換及跳躍的現象,並利用EM(Expectation Maximization)演算法來估計模型的參數,以SEM(Supplemented Expectation Maximization )演算法估計參數的標準差,且使用概似比(Likelihood ratio)檢定結果顯示跳躍相關風險下狀態轉換模型比跳躍獨立風險下狀態轉換模型更適合描述股價指數報酬率。最後,驗證跳躍相關風險下狀態轉換模型能捕捉其報酬率不對稱、高狹峰與波動聚集之特性。 / Hamilton (1989) proposed Markov switching models to suppose the model parameters change with unobserved state variables which control the switch between states by Markov chain. It can be appropriate to grasp the financial and economic variables which facing structural changes, so it’s a very important financial model. Schwert (1989) observed stock prices, and discovered that the volatilities of recession are higher than the volatilities of expansion. Hence, Schwert (1989) suggested to apply the Markov switching models to stock market. However, most of underlying asset return have jump phenomenon when abnormal events occur to financial market. Wong (2008) proposed Markov switching models with jump risks to improve Markov switching models which can not capture the jump risk of asset price. According to stock index return’s descriptive statistics and dynamic graph, we argue that states will impact jump sizes. In this paper, we extend the regime-switching model with independent jump risks (Chou, 2010) to provide better analysis for the dynamic of return. This paper use stock indices of the study period from 1999 to 2010 to estimate the parameters of the model and variance of parameter estimators by Expectation-Maximization (EM) algorithm and SEM(Supplemented Expectation Maximization ) , respectively. And use the likelihood ratio statistics to test which model is appropriate.Finally, the empirical results show that regime-switching model with jump sizes dependency risk can capture leptokurtic feature of the asset return distribution and volatility clustering phenomenon.
|
4 |
S&P500波動度的預測 - 考慮狀態轉換與指數風險中立偏態及VIX期貨之資訊內涵 / The Information Content of S&P 500 Risk-neutral Skewness and VIX Futures for S&P 500 Volatility Forecasting:Markov Switching Approach黃郁傑, Huang, Yu Jie Unknown Date (has links)
本研究探討VIX 期貨價格所隱含的資訊對於S&P 500 指數波動度預測的解釋力。過去許多文獻主要運用線性預測模型探討歷史波動度、隱含波動度和風險中立偏態對於波動度預測的資訊內涵。然而過去研究顯示,波動度具有長期記憶與非線性的特性,因此本文主要研究非線性預測模型對於波動度預測的有效性。本篇論文特別著重在不同市場狀態下(高波動與低波動)的實現波動度及隱含波動度異質自我迴歸模型(HAR-RV-IV model)。因此,本研究以考慮馬可夫狀態轉化下的異質自我迴歸模型(MRS-HAR model)進行實證分析。
本研究主要目的有以下三點: (1) 以VIX期貨價格所隱含的資訊提升S&P 500波動度預測的準確性。(2) 結合風險中立偏態與VIX期貨的資訊內涵,進一步提升S&P 500 波動度預測的準確性。(3) 考慮狀態轉換後的波動度預測模型是否優於過去文獻的線性迴歸模型。
本研究實證結果發現: (1) 相對於過去的實現波動度及隱含波動度,VIX 期貨可以提供對於預測未來波動度的額外資訊。 (2) 與其他模型比較,加入風險中立偏態和VIX 期貨萃取出的隱含波動度之波動度預測模型,只顯著提高預測未來一天波動度的準確性。 (3) 考慮狀態轉換後的波動度預測模型優於線性迴歸模型。 / This paper explores whether the information implied from VIX futures prices has incremental explanatory power for future volatility in the S&P 500 index. Most of prior studies adopt linear forecasting models to investigate the usefulness of historical volatility, implied volatility and risk-neutral skewness for volatility forecasting. However, previous literatures find out the long-memory and nonlinear property in volatility. Therefore, this study focuses on the nonlinear forecasting models to examine the effectiveness for volatility forecasting. In particular, we concentrate on Heterogeneous Autoregressive model of Realized Volatility and Implied Volatility (HAR-RV-IV) under different market conditions (i.e., high and low volatility state).
This study has three main goals: First, to investigate whether the information extracted from VIX futures prices could improve the accuracy for future volatility forecasting. Second, combining the information content of risk-neutral skewness and VIX futures to enhance the predictive power for future volatility forecasting. Last, to explore whether the nonlinear models are superior to the linear models.
This study finds that VIX futures prices contain additional information for future volatility, relative to past realized volatilities and implied volatility. Out-of-sample analysis confirms that VIX futures improves significantly the accuracy for future volatility forecasting. However, the improvement in the accuracy of volatility forecasts is significant only at daily forecast horizon after incorporating the information of risk-neutral skewness and VIX futures prices into the volatility forecasting model. Last, the volatility forecasting models are superior after taking the regime-switching into account.
|
5 |
以變異數比率法檢定指數選擇權之買賣權平價理論——馬可夫狀態轉換模型之應用秦秀琪 Unknown Date (has links)
本研究目的在於探討Put-Call Parity(PCP)所隱含的買權、賣權與標的資產間的價格變動關係。藉由探討PCP偏差程度的動態行為,推論若PCP的偏差為隨機漫步過程,則無法達到長期穩定,隱含PCP的廣義關係無法成立;反之,若PCP的偏差具有回歸平均特性,表示長期會達到穩定狀態,則PCP的廣義關係成立。
在研究方法上本文以變異數比率法檢定指數選擇權的PCP偏差是否為隨機漫步過程,採用隱含利率和實際無風險利率的差代表PCP的偏差程度,利用馬可夫轉換模型描繪PCP偏差的動態行為,並使用Gibbs Sampling演算法說明參數的不確定性。
本文以S&P500和DAX為研究標的,並探討股利不確定性是否影響PCP廣義關係,得到下列結論:
1、 對於S&P 500指數選擇權而言,不論是以日資料或週資料估計VR,S&P 500的PCP偏差都無法提供回歸平均的證據,隱含S&P 500的PCP廣義關係無法成立。
2、 對於DAX指數選擇權而言,檢定日資料的結果發現,DAX之PCP偏差在長期時(40~50日)有明顯的回歸平均的證據;而在檢定週資料時,使用原始資料法在90%信心水準下,不論取任何lag都可拒絕虛無假設,使用標準化資料則無法提供明顯的回歸平均證據。
3、 比較S&P 500和DAX,檢定日資料與週資料的結果都發現,DAX的p-value都比S&P 500小,並且S&P 500的PCP偏差都無法提供回歸平均的證據,而DAX有明顯回歸平均現象,隱含在消除股利的不確定性後,指數選擇權PCP的廣義關係式成立之證據較強烈。
|
6 |
跳躍相關風險下狀態轉換模型之選擇權定價:股價指數選擇權實證分析 / Option pricing of a stock index under regime switching model with dependent jump size risks: empirical analysis of the stock index option林琮偉, Lin, Tsung Wei Unknown Date (has links)
本文使用Esscher轉換法推導狀態轉換模型、跳躍獨立風險下狀狀態轉換模型及跳躍相關風險下狀態轉換模型的選擇權定價公式。藉由1999年至2011年道瓊工業指數真實市場資料使用EM演算法估計模型參數並使用概似比檢定得到跳躍相關風險下狀態轉換模型最適合描述報酬率資料。接著進行敏感度分析得知,高波動狀態的機率、報酬率的整體波動度及跳躍頻率三者與買權呈現正相關。最後由市場驗證可知,跳躍相關風險下狀態轉換模型在價平及價外的定價誤差皆是最小,在價平的定價誤差則略高於跳躍獨立風險下狀態轉換模型。 / In this paper, we derive regime switching model, regime switching model with independent jump and regime switching model with dependent jump by Esscher transformation. We use the data from 1999 to 2011 Dow-Jones industrial average index market price to estimate the parameter by EM algorithm. Then we use likelihood ratio test to obtain that regime switching model with dependent jump is the best model to depict return data. Moreover, we do sensitivity analysis and find the result that the probability of the higher volatility state , the overall volatility of rate of return , and the jump frequency are positively correlated with call option value. Finally, we enhance the empirical value of regime switching model with dependent jump by means of calculating the price error.
|
Page generated in 0.0276 seconds