• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

一些關於排列組合的演算法 / Some algorithms about permutations and combinations

許振忠 Unknown Date (has links)
在排列組合運算中,雖然已知的公式已經不少,但對於現實生活上所遇到的問題,往往不只是要求得到”總共才幾個”,最重要的會是在於”到底有哪些個!!”。在本篇之中,將利用電腦的輔助,將您所想要的結果一一列出來,您的問題不再是只能得到一個空洞的”數字解”,而是能完完全全地了解整個狀況,給您對於排列組合問題一種新的威受! 除此之外,對於排列組合中仍有許多不容易處理的問題,至今仍沒有一個簡單的公式解的,在本篇之中,雖然也一樣沒法告訴您它的公式解是什麼,但透過電腦的幫助,至少能在很短的時間之內,算出您想要的結果;且除了能將結果一一呈現列印在您的電腦螢幕上之外,更能在不需要浪費記憶體的情況之外,就可以把結果都保存下來。讓您能夠解決”總共有多少個”的問題,也同時能讓您知道“到底有哪些個”!
2

不盡相異物的環狀排列公式 / A Formula on Circular Permutation of Nondistinct Objects

王世勛, Wang,shyh shiun Unknown Date (has links)
n個物品之直線排列數與環狀排列數有對應關係,一般而言,具有K-循環節的直線排列之所有情形數若為 ,則 即為所對應的環狀排列數,亦即每K種直線排列對應到同一種環狀排列。本文將直線排列之所有情形依所具有的K-循環節之類別做分割,並導出具有K-循環節之直線排列之所有情形數之計數公式,假設直線排列依 -循環節, -循環節, , -循環節分類依序有 種不同排列情形,則所有的環狀排列數 。 / There exists a correspondence between ordered arrangements and circular permutations. Generally speaking, suppose the number of ordered arrangements with K-recurring periods is S, then the number of circular permutations is , namely we may assigne each K cases of ordered arrangements with K-recurring periods to a case of circular permutations. This article partitions the total cases of ordered arrangements with indistinguishable objects by means of the different catagories of K-recurring periods and derives a formula to calculate the total number of ordered arrangements with K-recurring periods. Suppose the number of ordered arrangements with -recurring periods、 -recurring periods、 、 -recurring periods is respectively, then the total number of circular permutations is .

Page generated in 0.0128 seconds