• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

台灣與國際股市相關係數的時間數列分析及應用 / Comovements in Taiwan and international equity market

吳銀釧, Wu, Yin-Chuan Unknown Date (has links)
本篇論文的目的,希望以台灣為出發點來看,台灣與國際股市間的互動性,所著重的指標仍以共變數與相關係數為主,但同時也考慮了相關係數具有序列相關的影響,希望藉由這種模型的設計能夠找出台灣與國際股市之間的互動性,進而加以應用。 本文探討台灣與美國 NYSE,台灣與日本 Nikkie 225,台灣與香港,台灣與韓國的股票市場間日相關係數與共變異數,採用兩變數 GARCH 模型,實證結果發現: 1,其實台灣與國際市場間的共變異數矩陣,不是為一常數,是具有時間數列的關係存在的,因而具有可預測性。 2,台灣與韓國股市之間的關連性很小,因為他們之間永久共變數與暫時共變數都不顯著異於零;而台灣與美國 NYSE、台灣與日本 Nikkie225、或台灣與香港恆生指數等,他們之間永久共變數與暫時共變數都顯著異於零,這表示台灣與這些國家門存在有相當的關係。 3,台灣與國際市場的條件日相關係數是具有正向的時間趨勢的。 4,此一兩變數的 GARCH 模型於樣本外的共變數矩陣之預估能力,相較於傳統的 CAPM 模型,較具有準確性,因而可以在國際投資方面,將資金更有效的國際市場上,獲得更好的投資績效。 / we examine the co-movements of equity returns in five major international markets by characterizing the time-varying cross-country covariances and correltions. Using a generalized positive definite multivariate GARCH model, we find that Taiwan and Korea stock markets have zero permanent and transitory covariance.The other pairs of markets examined display significant permanent and transitory covariance. We also find that ,while conditional correlations betweem returns are gernerally small, they change considerably over time. An event analysis suggests that basing diversification strategies on these conditional correlations is potentially beneficial.
2

台灣股票市場波動之研究 / The research of Taiwan's stock market volatility

陳功業, Chen, Kuang-Yeh Unknown Date (has links)
本文主要在探討影響台灣股票市場波動的因素,除了考慮以之前學者設定的 VAR(12)模型研究,另外以 SUR(5)模型來討論股市波動與基本面、交易面間的關係;最後,再以自我迴歸異質條件變異數模型來分析股市波動的特性。最重要的是,我們會根據誤差項的各類檢定結果來判定研究股市波動性質的最佳模型。 在聯立方程式的估計中,我們發現代表資訊到達指標的兩變數--週轉率與成交量成長率--會影響股票市場的波動。另外,我們找出交易面(成交量成長率)可能會影響基本面(匯率),這也就是說,在研究股市波動時,我們不需要特別區分變數的屬性。 在 GARCH 模型及 TGARCH 模型中,我們仍然可發現週轉率與成交量成長率會影響股市條件平均數或條件變異數;除此之外,好壞消息對股市日報酬率條件變異數(條件波動)應有不同的影響效果(壞消息的影響力較快反應)。而股市自身風險係數雖然統計檢定上不顯著異於零,但若未加入條件平均數的估計式,則可能會使模型得到較差的誤差項檢定結果,顯見股市自身風險應為影響投資人設定期望報酬率水準的重要因素之一。 從上述估計結果,我們可以知道,若散戶投資人能正確解讀市場上出現的各種新資訊之背後意義,將可使成交量成長率或週轉率(大部份可能代表無意義或不正確的交易行為)的變動幅度降低,進而有效地減少股票市場中股價異常波動的現象。 / My essay's topic focuses on discussing the factors that influence stock market volatility in Taiwan's stock market. Besides VAR(12) model as previous researchers have studied, I tries to set up SUR(5) models analyzing the relationship among the stock market volatility、the foundamental variables'volatilities and trading activities; Then I cited ARCH models ( autoregressive conditional heteroskedisticity models ) to find out the characteristics of stock market volatility. Most important of all, according to each misspecification test ( residual test ), I would specify the better models to describe the stock market volatility. In the estimations of system equations ( VAR(12)and SUR(5)models ), first I found that turnover rate and the growth rate of trading volume, which represent the information arrival indexes, could effect stock return's monthly conditional variance. Second, I especially found out the evidence that trading activities (trading volume growth) would probably have an impact on the macroeconomic variable ( exchange rate volatility ). It shows that we don't need to distinguish the attributes of those factors which could influence stock market volatility. In GARCH and TGARCH model, the positive influences of turnover and trading volume growth on daily stock return's conditional mean and conditional variance ( conditional volatility ) are still obvious, Within these TGARCH model, I discovered that bad news and good news could have different influences on stock market volatility ( the impact of bad news which resulted in downward movements of stock market volatility appeared faster that the good news'which caused upward movements). Stock market's self-risk(σ<sub>t-1</sub><sup>^2</sup>) is statistically insignificant different from zero in GARCH models, but when I omitted this variable in daily stock return's conditional mean estimation equation, standardized residual might not obey the assumption of normal distribution. It apparently told us that the stock market's self-risk term ( σ<sub>t-1</sub><sup>^2</sup> ) is one of the critical factors which influences investors to estimate expected return level. From those results above, we realized that if investors could precisely understand the real meanings of new information conveying in the stock market, it might decrease the levels of turnover and trading volume growth ( which could sometimes represent meaningless or inexact trading activities ), then effectively reduce the abnormal volatility phenomenon in stock market.
3

臺灣上市公司宣告海外直接投資訊息對股東財富之影響-異質條件變異數分析法 / The Effect of Foreign Direct Investment in Taiwan Stock Market - GARCH Approach

黃楚淵, Huang, Chu-Yuan Unknown Date (has links)
本研究主要目的在探討公司宣告海外直接投資,是否會對股東財富有正面的影響,主要透過資本市場上,公司股票價格的漲跌來判斷其影響的方向及程度。研究期間為民國81年到84年,篩選出175筆對外投資宣告的樣本資料,採用事件研究法和市場模式來進行殘差分析,以估算及檢定事件期的平均異常報酬和累積平均異常報酬。此外,由於一些金融性資產如股票、債券、期貨等具有高度變異性的特質,造成殘差項之變異數不再為固定常數,而受上一期異質變異數之影響,且隨時間變動而變動,因此本研究也採用異質條件變異數法(GARCH)來分析。   一、總樣本而言   公司宣告進行對外直接投資,在宣告日當天股價有顯著為正的顯著異常報酬,股東認為公司進行投資是以公司價值極大化為目標,並能增加股東財富。   而本研究也根據不同的統計方法和檢定來比較結果差異,發現T檢定組、Z檢定組、OLS整體樣本組和OLS+GARCH整體樣本組四組所得的實證結果相當一致-異常報酬的變化方向皆相同且宣告日當天的異常報酬都顯著為正。   二、一般最小平方法(OLS)和異質條件變異數法之比較   本研究接著將72個具有異質變異數特性的樣本,分別以OLS法和GARCH法進行異常報酬的比較,實證結果發現,以OLS法估計具異質變異數的樣本,其平均異常報酬在事件日當天為正,達5%之顯著水準(t=2.459),而以GARCH法估計的具異質變異數的樣本,其正向異常酬在事件日當天顯著水準為15%(t=1.569),並不顯著異於零。   三、橫斷面複迴歸分析   就橫斷面分析結果來看,營業規模和投資東南亞地區達10%的顯著水準能解釋與異常報酬的關係,但呈現負向反應,表營業規模愈大則愈不利於股東財富和投資東南亞並無法增加股東財富。而其他解釋變數則未達顯著水準,其中經營績效、中國大陸地區之迴歸係數符號為正;相對投資金額、獨資之迴歸係數則為負。   整體而言,公司從事海外直接投資的宣告,股東都視之為利多消息,顯示海外直接投資對台灣企業的發展和延續有著重要的意義,然而在企業宣告投資後的跨國經營與管理才是台灣企業能否在全球競爭下,成功挑戰廿一世紀的關鍵因素。

Page generated in 0.0177 seconds