• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

臺灣各類股與國際股市間外溢效果的認定與動態分析 / Spillover effects and dynamic analysis between Taiwan and global stock markets

李佳磬 Unknown Date (has links)
本文應用向量自我迴歸模型與一般化預測誤差變異數分解,並將其估計結果導入網路拓樸與引力佈局模型的概念,來探討臺灣類股與國際股票市場之間報酬率的傳導結構與外溢效果。我們使用了 2001 年 7 月至 2015 年 10 月的臺灣加權股價指數、臺灣 19 個類股股價指數與國際間 43 個國家之主要股市指數來進行分析。我們發現,除了已開發國家之股市對臺灣類股有較大的影響外,部份亞洲發展中國家亦與臺灣類股之間有相當緊密的連結。另外,雖然國際股市對臺灣類股的外溢效果在 2013 年之後有所下降,但整體而言,臺灣類股受到國際股市的影響在過去十年之間大致呈現上升的趨勢。
2

住宅價格與總體經濟變數關係之研究-以向量自我迴歸模式(VAR)進行實證 / A Study on the Relationship between Housing Price and Macro - economic Variable

黃佩玲, Hwang, Pay Ling Unknown Date (has links)
由於住宅價格變動毫無預警制度,人民往往憑著個人主觀的判斷而決定何時購屋或售屋,而此種主觀判斷住宅市場利多及利空的觀念,對住宅市場的供需會產生失衡現象,因此是否可從經濟面的訊息找到住宅價格變動的答案,使住宅價格在尚未變動前,政府即已掌握資訊,提前做好穩定住宅價格的因應對策,使民眾依其需要而購屋,則是本研究之主要目的。   本研究從文獻中整理出影響住宅價格變動的七個總體經濟變數,這些總體經濟變數包含工資、物價、所得、貨幣供給額、股價、匯率及利率等,並利用向量自我迴歸模式(VAR)進行實證,以便較客觀的獲得變數間的落後期數及暸解變數間雙向、單向及領先、同步、落後情形,且進一步探討住宅價格與每一個總體經濟變數間影響程度大小及影響情形,以釐清各變數之間的關係。   本研究利用VAR模型進行住宅價格與總體經濟變數關係的研究,經由實證,得到下列的結論:   一、實證結果方面   本研究之實證主要有因果關係檢定與分析、變異數分解之分析及衝擊反應之分析三方面,其實證結果如下所述。   (一)因果關係檢定與分析   由因果關係檢定與分析中,得到股價、物價、匯率、貨幣供給額及利率均能做為住宅價格變動的領先指標。   (二)變異數分解之分析   由住宅價格之變異數分解中,得知住宅價格自身的解釋程度僅占三分之一,另三分之二被其他的總體經濟變數所解釋,顯示住宅價格受總體經濟變數的影響相當大;而從其他總體經濟變數之變異數分解中,得知住宅價格變動會干擾到總體經濟變數,而使總體經濟變數受干擾而變動變動。   (三)衝擊反應之分析   從總體經濟變數對住宅價格的衝擊反應分析圖中可以明顯看出除工資外,其餘總體經濟變數變動對住宅價格造成的衝擊均相當明顯,但匯率及利率對住宅價格的衝擊是負向的。   住宅價格對所得、股價、匯率及利率的衝擊相當明顯,而其對匯率的衝擊是負向。   二、政策應用方面 政府的決策過程中常會有時間落後的現象,而本研究實證的目的則是要使政府能事先掌握住宅價格的變動,並提前做好穩定住宅價格的因應對策,減少政府決策過程的時間落後現象,而實證結果應用至政策方面的內容則由以下說明之。   (一)藉由因果關係檢定與分析的實證內容,可以縮短政府對住宅價格不合理變動問題認定落後的時間。   (二)從變異數分解之分析的實證內容中,可以使決策者在解決住宅價格問題時,將行動落後的時間減少。   (三)由衝擊反應之分析中,可以使政府在執行穩定住宅價格政策時,將衝擊落後的時間縮小。 / Since there is no alarm system in the change of housing prices, people often decide when to buy or when to sell based on personal and subjective judgement. Such concept to judge subjectively whether the housing market is bull or bear will cause unequilibrium in the supply and demend of the housing market. There it is possible to find out the answers to the change of housing prices from economic side so that the government can have enough information and can be prepared in the reaction to stabilizing the housing prices, and so that the public can buy house according to their needs is the main purpose of this project.   Seven variables in macroeconomics influencing the change of housing prices have been taken from reative literature, including wage, commodity price, income, money supply, stock price, exchange rate, and interest rate. VAR has been employed to verify so that the more objective lagging period among variable can be known, and the bi-directional, uni-directional, leading, contemporaneous, and lagging situation among variables can be understood. Furthermore, the degree and the status of influence of each macroeconomic variable to the housing price will be investigated to clarify the relations among the variables.   The present project investigate the relations between housing price and macroeconomic variables. We have the following findings:   I、In Empirical Study:   The empirical study in this project includes causal relation test and analysis, the analysis of variable decompositon, and the analysis of impact response. The results are shown in the following:   (I) Causality Test and Analysis   In the causality test and analysis, we find out that stock price, commodity price, exchange rate, money supply and interest rate all can be the leading indicators in the change of housing prices.   (II) The Analysis of Variable Decomposition   It is learned from the variable decomposition of housing prices that housing price can only explain one third of the cause in its change, the other two thirds are explained by other macroeconomic variables. It shows that housing prices are subject to the influence of macroeconomic variables greatly.   From the variable decomposition of other macroeconomic variables, we know that the change in housing prices will affect macroeconomic variables so that the macroeconomic variables will change.   (III) The Analysis of Impact Response   It can be obviously seen from the analysis figure of the impact response of the macroeconomics to housing prices, all macroeconomic variables will cause obvious impact to housing prices expect for wage. However, both exchange rate and interest rate have negative impact to housing prices.   Housing prices' impact to income, stock prices, exchange rate and interest rate is quite obvious, among which, the impact to exchange rate is negative.   II、Policy Application   It is a common phenomenon that there often will be lagging in time in government's decision making. The purise of the empirical study in this project is to let the government to know in advance the change of housing prices and to let the government to know in advance the change of housing prices and to let the government be prepared in the reaction of stabilizing the housing prices to minimize the lagging in the decision making process. The contents of application of the empirical study to policy are explained in the following:   (I) With the empirical results of the change of the causality test and analysis, the time for the government to recognize the unreasonable changes in housing prices can be shortened.   (II) With the empirical results of the analysis of variable decomposition, the decision makers' lagging in the action responding to housing pricescan be minimized.   (III) With the analysis in impact response, the lagging in impact will be minimized when the government executing her housing price stabilizing policy.
3

台股指數與總體經濟變數相關性之探討 / Discussion on Taiwan stock index and the overall correlation of economic variables

林威凱 Unknown Date (has links)
本研究之樣本取自1991年7月1日至2010年3月之月資料,探討各總體經濟變數包括:利率、匯率(美元對新台幣)、M1B、出口、GDP、領先指標綜合指數與大陸及美國兩股市,對台股指數之影響。實證結果顯示,道瓊工業指數為影響台股加權指數最具代表性與領先的指標,大陸股市則非如一般所預期對台股指數變動有重要解釋能力。且道瓊工業指數、利率、M1b、GDP對台股具有領先的單向因果關係。 在衝擊反應函數及變異數分解中,除了道瓊工業指數為判斷台股指數變動最重要因素外,利率與貨幣供給則扮演著解釋台股變動另一重要的角色,利率調升對台股指數之影響為先正後負,當利率調升前,投資者會事先反應,但調升後便會開始調節,反而對台股造成負向影響;而GDP及出口在變異數分解中占台股變異數比例是相對次高的比重,說明台股的變動反應了經濟的基本面因素,台股的變動亦會受其影響,惟此二項變數屬於落後指標,只能用在事後分析。而(美元兌新台幣)匯率及領先指標綜合指數則對台股變動無顯著解釋能力。

Page generated in 0.0154 seconds