• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

從我國證券市場監理法制論財務報表不實之法律責任

周秀美 Unknown Date (has links)
當今社會經濟資源的流通體系中,證券市場是十分重要之機制,當投資人於證券市場將其資金挹注於經營體質良好之公司,所產生的連動效果將有助於整體經濟的蓬勃發展。被投資公司之財務報表以及財務報表衍生的各類分析,是投資人決策過程中極為重要的參考資訊,亦是被投資公司檢視自我財務狀況及經營成果的主要依據,從而產生由會計師進行查核簽證等需求,期藉由會計師之獨立性及專業審核,合理確認財務報表是否允當表達。  然而近年來國內外接連發生多起重大財務舞弊案件,廣大投資人及債權人直接蒙受其害,財務報表編製者、公司高階主管與簽證會計師之專業能力和職業道德備受質疑,尤其是位居專家立場,為財務報表之允當表達與否背書的會計師,更是成為眾矢之的,主管機關亦即刻就證券交易法、會計師法等相關法令進行修正,加重會計師法律責任成為報章雜誌一再出現的主題。   關於財務報表真實性之確保,會計師之簽證職能雖被賦予極高的期待,惟財務報表供應鍊整體尚包括公司管理階層、監察人、準則制定者、主管機關等,倘能就所有環節進行個別審視檢討,進而就供應鍊整體加以綜合規劃,對於建立證券市場健全的資訊公開體系,當能提供更完整而根本之助益。   本文首先說明財務報表於證券市場資訊公開體系中之定位,包括財務報表之主要內容與功能,以及進行編製、查核簽證時所應遵循之法令規範;次則就財務報表不實之意義及案例、法院判決進行探討,並介紹相關研究報告之主要內容;接著說明證券市場監理法制對於財務報表不實之防制體系,包括自律與他律機制對於確保財務資訊真實性之規範,其中由於會計師簽證係證券市場監理法制中,確保財務資訊真實性之最基本要求與第一道防線,因而另以會計師為法律責任探討主體,下分行政責任、對投資人以及委託查核客戶之民事責任、刑事責任、對受查公司追究法律責任之可行性等,依序說明現行規範及新近修法概況;最後關於財務報表內容存在不實情事時,現行法令中已納入規範之責任主體,包括有價證券發行人、證券商、發行人之職員、主辦會計人員、會計師及其他專門技術人員等,就其所應負之行政、民事、刑事責任本文以表格方式整理列示,期就財務報表不實法律責任之現行法令構成體系,作一整體檢視,並試加探討建議。
2

適用於財務舞弊偵測之決策支援系統的對偶方法 / A dual approach for decision support in financial fraud detection

黃馨瑩, Huang, Shin Ying Unknown Date (has links)
增長層級式自我組織映射網路(GHSOM)屬於一種非監督式類神經網路,為自我組織映射網路(SOM)的延伸,擅長於對樣本分群,以輔助分析樣本族群裡的共同特徵,並且可以透過族群間存在的空間關係假設來建立分類器,進而辨別出異常的資料。 因此本研究提出一個創新的對偶方法(即為一個建立決策支援系統架構的方法)分別對舞弊與非舞弊樣本分群,首先兩類別之群組會被配對,即辨識某一特定無弊群體的非舞弊群體對照組,針對這些配對族群,套用基於不同空間假設所設立的分類規則以檢測舞弊與非舞弊群體中是否有存在某種程度的空間關係,此外並對於舞弊樣本的分群結果加入特徵萃取機制。分類績效最好的分類規則會被用來偵測受測樣本是否有舞弊的嫌疑,萃取機制的結果則會用來標示有舞弊嫌疑之受測樣本的舞弊行為特徵以及相關的輸入變數,以做為後續的決策輔助。 更明確地說,本研究分別透過非舞弊樣本與舞弊樣本建立一個非舞弊GHSOM樹以及舞弊GHSOM樹,且針對每一對GHSOM群組建立分類規則,其相應的非舞弊/舞弊為中心規則會適應性地依循決策者的風險偏好最佳化調整規則界線,整體而言較優的規則會被決定為分類規則。非舞弊為中心的規則象徵絕大多數的舞弊樣本傾向分布於非舞弊樣本的周圍,而舞弊為中心的規則象徵絕大多數的非舞弊樣本傾向分布於舞弊樣本的周圍。 此外本研究加入了一個特徵萃取機制來發掘舞弊樣本分群結果中各群組之樣本資料的共同特質,其包含輸入變數的特徵以及舞弊行為模式,這些資訊將能輔助決策者(如資本提供者)評估受測樣本的誠實性,輔助決策者從分析結果裡做出更進一步的分析來達到審慎的信用決策。 本研究將所提出的方法套用至財報舞弊領域(屬於財務舞弊偵測的子領域)進行實證,實驗結果證實樣本之間存在特定的空間關係,且相較於其他方法如SVM、SOM+LDA和GHSOM+LDA皆具有更佳的分類績效。因此顯示本研究所提出的機制可輔助驗證財務相關數據的可靠性。此外,根據SOM的特質,即任何受測樣本歸類到某特定族群時,該族群訓練樣本的舞弊行為特徵將可以代表此受測樣本的特徵推論。這樣的原則可以用來協助判斷受測樣本的可靠性,並可供持續累積成一個舞弊知識庫,做為進一步分析以及制定相關信用決策的參考。本研究所提出之基於對偶方法的決策支援系統架構可以被套用到其他使用財務數據為資料來源的財務舞弊偵測情境中,作為輔助決策的基礎。 / The Growing Hierarchical Self-Organizing Map (GHSOM) is extended from the Self-Organizing Map (SOM). The GHSOM’s unsupervised learning nature such as the adaptive group size as well as the hierarchy structure renders its availability to discover the statistical salient features from the clustered groups, and could be used to set up a classifier for distinguishing abnormal data from regular ones based on spatial relationships between them. Therefore, this study utilizes the advantage of the GHSOM and pioneers a novel dual approach (i.e., a proposal of a DSS architecture) with two GHSOMs, which starts from identifying the counterparts within the clustered groups. Then, the classification rules are formed based on a certain spatial hypothesis, and a feature extraction mechanism is applied to extract features from the fraud clustered groups. The dominant classification rule is adapted to identify suspected samples, and the results of feature extraction mechanism are used to pinpoint their relevant input variables and potential fraud activities for further decision aid. Specifically, for the financial fraud detection (FFD) domain, a non-fraud (fraud) GHSOM tree is constructed via clustering the non-fraud (fraud) samples, and a non-fraud-central (fraud-central) rule is then tuned via inputting all the training samples to determine the optimal discrimination boundary within each leaf node of the non-fraud (fraud) GHSOM tree. The optimization renders an adjustable and effective rule for classifying fraud and non-fraud samples. Following the implementation of the DSS architecture based on the proposed dual approach, the decision makers can objectively set their weightings of type I and type II errors. The classification rule that dominates another is adopted for analyzing samples. The dominance of the non-fraud-central rule leads to an implication that most of fraud samples cluster around the non-fraud counterpart, meanwhile the dominance of fraud-central rule leads to an implication that most of non-fraud samples cluster around the fraud counterpart. Besides, a feature extraction mechanism is developed to uncover the regularity of input variables and fraud categories based on the training samples of each leaf node of a fraud GHSOM tree. The feature extraction mechanism involves extracting the variable features and fraud patterns to explore the characteristics of fraud samples within the same leaf node. Thus can help decision makers such as the capital providers evaluate the integrity of the investigated samples, and facilitate further analysis to reach prudent credit decisions. The experimental results of detecting fraudulent financial reporting (FFR), a sub-field of FFD, confirm the spatial relationship among fraud and non-fraud samples. The outcomes given by the implemented DSS architecture based on the proposed dual approach have better classification performance than the SVM, SOM+LDA, GHSOM+LDA, SOM, BPNN and DT methods, and therefore show its applicability to evaluate the reliability of the financial numbers based decisions. Besides, following the SOM theories, the extracted relevant input variables and the fraud categories from the GHSOM are applicable to all samples classified into the same leaf nodes. This principle makes that the extracted pre-warning signal can be applied to assess the reliability of the investigated samples and to form a knowledge base for further analysis to reach a prudent decision. The DSS architecture based on the proposed dual approach could be applied to other FFD scenarios that rely on financial numbers as a basis for decision making.

Page generated in 0.0217 seconds