• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

品牌廠商回收及處理分配決策模式

陳蔚華, Chen,Wei Hua Unknown Date (has links)
逆物流在過去一直不被受到重視,但是在最近不管是世界各國開始制定法規諸如WEEE、RoHS等以及消費者環保意識的抬頭,都不得不讓企業開始專注在逆物流供應鏈上面,由於逆物流的不確定因素及成本都遠比過去正物流來的複雜,因此,過去企業往往選擇外包給專業第三方逆物流業者來處理。   然而在過去文獻中指出,其實企業自行建立逆物流供應鏈擁有一些外包得不到的好處,因此,仍然有企業願意自行建立逆物流供應鏈,本研究的目的在於提出一個最佳化模式,此模式利用非線性規劃先將整個研究模式建立成數學模式,再利用隨機規劃方法來將回收量、回收品質及拆解數量這三項不確定因素考慮進去,接著透過情境的方式來表達未來各種可以能發生的情況,再透過非線性隨機規劃模式來去求得一個綜合各種情境的最佳回收處理分配,最後再利用一個手機品牌廠商來做為範例。
2

資產配置之動態規劃 / An Application of Dynamic Asset Allocation: Two-period Investigation

蔡秉寰, Tsai, Ping-Huan Unknown Date (has links)
資產配置乃是將資金分散投資到主要的資產類別中,諸如股票、債券、現金等。傳統的均數/變異數方法在資產配置上早已被廣泛的運用。但是,現今的金融情勢多變,多期配置的需求提高,傳統均數/變異數方法只處理單一期間的資產配置,且反應未來的能力不佳,顯然已經不適用。 本論文提供一種多期動態的資產配置,可以改良過去單點估計值的缺點,同時能夠將未來情境納入考量,使多期資產配置更富策略性。並實證在兩期的情況下,期中調整資產組合與不調整的差異性。從而瞭解持續的動態規劃,方能提升資產配置的效率性。 / Asset allocation is the process of dividing an investment fund among major asset classes such as equities, bonds, cash, etc. Traditional mean-variance portfolio selection is widely used for asset allocation. However, as time goes by, the financial condition changes rapidly. The method of mean-variance analysis has some limitations. It not only can’t deal with multiperiod asset allocation, but also cannot reflect future economic circumstances, especially for long-term investments. This research tries to use the method of multi-stage dynamic programming for asset allocation. This method can improve the pits of single estimate in using mean-variance analysis, and take future scenarios into account so that the model will become more useful in practice. The two-period empirical results have shown that using continuous dynamic programming to build strategic asset allocation decision can improve the efficiency of asset allocation.
3

資產負債管理的隨機規劃模型在退休基金上的應用 / A stochastic programming model for asset liability management with an application of pension fund

陳煌林 Unknown Date (has links)
本論文應用數學規劃建立符合我國法令規範與投資政策說明書之投資政策及風險管理的資產負債管理模型。主要的討論對象為國民年金、公務人員退休撫卹基金與新制勞工退休金。模型中主要透過資產配置的收益與提撥收入維持現金流的平衡,以支應現在或未來的負債。在提出的模型中,採取維持最低基金公積率的策略,以確保長期的償付能力。當償付能力不足時,以政府撥補或是修正提撥率處理巨額的虧損。且使用機率限制式將發生不足的風險控制在可接受的範圍內。因此本論文提出的模型為多階段的有補償的混和整數隨機規劃模型。
4

追蹤穩定成長目標線的投資組合隨機最佳化模型 / Stochastic portfolio optimization models for the stable growth benchmark tracking

林澤佑, Lin, Tse Yu Unknown Date (has links)
本論文提出追蹤特定目標線的二階段混合整數非線性隨機規劃模型,以建立追蹤目標線的投資組合。藉由引進情境樹(scenario tree),我們將此類二階段隨機規劃問題,轉換成為等價的非隨機規劃模型。在金融商品的價格波動及交互作用下,所建立的投資組合在經過一段時間後,其追蹤目標線的能力可能會日趨降低,所以本論文亦提出調整投資組合的規劃模型。為符合實務考量,本論文同時考慮交易成本、股票放空的限制,並且加入期貨進行避險。為了反應投資者的預期心理,也引進了選擇權及情境樹。最後,我們使用台灣股票市場、期貨交易市場及台指選擇權市場的資料進行實證研究,亦探討不同成長率設定之目標線與投資比例對於投資組合的影響。 / To construct a portfolio tracking specific target line, this thesis studies how to do it via two-stage stochastic mixed-integer nonlinear model. We introduce scenario tree to convert this stochastic model into an deterministic equivalent model. Under the volatility of price and the interaction of each financial derivatives, the performance of the tracking portfolio may get worse when time elapses, this thesis proposes another mathematical model to rebalance the tracking portfolio. These models consider the transactions cost and the limitation of shorting a stock, and the tracking portfolio will include a futures as a hedge position. To reflect the expectation of investors, we introduce scenario tree and also include a options as a hedge position. Finally, an empirical study will be performed by the data from Taiwan stock market, the futures market and the options market to explore the performance of the proposed models. We will analyze how the different benchmarks settings and invest ratio will affect the value of the tracking portfolio.

Page generated in 0.0199 seconds