• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 64
  • 24
  • 23
  • 16
  • 15
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 2
  • Tagged with
  • 406
  • 167
  • 67
  • 46
  • 46
  • 45
  • 44
  • 43
  • 41
  • 39
  • 39
  • 38
  • 33
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Enhanced bone formation during distraction osteogenesis in FGFR3 deficient mice

Hamade, Fares. January 2008 (has links)
No description available.
292

The role of retinoic acid receptor gamma in retinoid-induced limb dysmorphogenesis /

Galdones, Eugene. January 2009 (has links)
No description available.
293

Metabolic Alteration in Growth Hormone Receptor Knock Out (GHRKO) Mice Treatedwith Rapamycin

Bell, Stephen Robert Clyde 10 September 2021 (has links)
No description available.
294

Regulation of Receptors in Neuronal Cilia with Development, Seizures, and Knockouts: Implications for Excitability

Shrestha, Jessica 08 1900 (has links)
Neurons commonly have a primary cilium, which is a non-motile organelle extending from the centrosome into the extracellular space. In most brain regions, neuronal cilia are enriched in either somatostatin receptor type 3 (SstR3) or melanin concentrating hormone receptor type 1 (MCHR1), or both. The present immunohistochemical study provides novel evidence that primary cilia regulate neuronal excitability via G-protein coupled receptors (GPCRs), and that their identity is governed by brain region and by competition, both in adulthood and in postnatal development. The hippocampus, which is particularly vulnerable to seizures, has opposing gradients of SstR3(+) and MCHR1(+) ciliary GPCRs. We hypothesized that there is a competition between these two ciliary GPCRs, which might take place on any level from gene expression to presence in the cilium. We examined whether receptor colocalization occurs transiently in development before ciliary GPCR dominance is established in neurons in the CNS. In postnatal CA1 and CA3, the first GPCR to appear in cilia was the one that will dominate in adults: MCHR1 in CA1 and SstR3 in CA3. Some days later, the second GPCR was expressed along with the first; dual-receptor cilia were the exclusive type until single-receptor cilia emerged again around P14. Single-receptor cilia then increased in numbers through adulthood. By identifying ciliary receptors that modulate seizure activity in mice, the present study lays a foundation for therapeutic approaches to reduce neuronal excitotoxicity underlying cell death in epilepsy, CNS injury, and neurodegenerative diseases.
295

Effects of Whole-Body Adenylyl Cyclase 5 (Adcy5) Deficiency on Systemic Insulin Sensitivity and Adipose Tissue

Dommel, Sebastian, Hoffmann, Anne, Berger, Claudia, Kern, Matthias, Klöting, Nora, Kannt, Aimo, Blüher, Matthias 30 January 2024 (has links)
Genome-wide association studies have identified adenylyl cyclase type 5 (ADCY5) as candidate gene for diabetes-related quantitative traits and an increased risk of type 2 diabetes. Mice with a whole-body deletion of Adcy5 (Adcy5–/–) do not develop obesity, glucose intolerance and insulin resistance, have improved cardiac function and increased longevity. Here, we investigated Adcy5 knockout mice (Adcy5–/–) to test the hypothesis that changes in adipose tissue (AT) may contribute to the reported healthier phenotype. In contrast to previous reports, we found that deletion of Adcy5 did not confer any physiological or biochemical benefits. However, this unexpected finding allowed us to investigate the effects of Adcy5 depletion on AT independently of lower body weight and a metabolically healthier phenotype. Adcy5–/– mice exhibited an increased number of smaller adipocytes, lower mean adipocyte size and a distinct AT gene expression pattern with midline 1 (Mid1) as the most significantly downregulated gene compared to control mice. Our Adcy5–/– model challenges previously described beneficial effects of Adcy5 deficiency and suggests that targeting Adcy5 does not improve insulin sensitivity and may therefore limit the relevance of ADCY5 as potential drug target.
296

Hippocampal Vasopressin 1b Receptors and the Neural Regulation of Social Behavior

Stevenson, Erica L. 21 November 2012 (has links)
No description available.
297

Interaction between Prolactin and the Hypothalamic-Pituitary-Adrenal (HPA) axis

Kalyani, Manu 16 April 2014 (has links)
No description available.
298

The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys

Shaw, Samantha J. 12 June 2014 (has links)
No description available.
299

Comparative genomic analysis and metabolic engineering of Clostridium acetobutylicum for enhanced n-butanol tolerance and production

Xu, Mengmeng January 2014 (has links)
No description available.
300

Function of Argonaute proteins in Dictyostelium discoideum

Mazurek, Aleksander Józef January 2024 (has links)
Argonaute proteins play substantial roles in post-transcriptional regulation of gene expression within RNA interference (RNAi) pathways, making them crucial subjects for research, aimed at understanding their interactions with small non-coding RNAs (ncRNAs) and other RNAi components. This study focuses on investigating these properties of Argonaute proteins, particularly Argonaute protein A (AgnA), in the social amoeba Dictyostelium discoideum that is renowned for its broad genetic toolbox and unique life cycle. While previous studies have examined the disruption of three Argonaute genes (agnB, agnC, agnE) and their effect on mRNA levels and small ncRNA expression, this study extends to agnA gene, which remains less studied. Key questions surrounding the influence of AgnA on the cellular processes such as the cell growth rate, development, gene expression, as well as potential targets and small ncRNA binding, remain unanswered. A well-established approach that could provide the necessary answers is the disruption of the gene through traditional homologous recombination, by insertion of a drug-resistance cassette flanked by homology arms complementary to the target locus. However, the emerging CRISPR/Cas9 gene editing tool on contrary offers straightforward protocols for disruption of gene expression through efficient induction of genomic knockouts, point mutations and deletions. In this study, both approaches were applied in parallel to knockout the agnA gene, enabling comparison of knockout efficiency and further study of the growth rate, development and gene expression in the knockout strains. Moreover, important information regarding the growth patterns of both wild-type and agnE knockout strains were also elucidated, complementing the previous growth rate analyses. The obtained data from this research could provide valuable insights for future studies ofthe RNAi machinery components and particularly the function of Argonaute proteins in D. discoideum.

Page generated in 0.0284 seconds