• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 23
  • 14
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 57
  • 51
  • 50
  • 40
  • 28
  • 19
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Entwicklung zweier Spektrometer für laserbeschleunigte Protonenstrahlen

Richter, Tom 08 April 2009 (has links)
Durch die Fokussierung eines ultrakurzen und hochintensiven Laserpulses auf ein Festkörpertarget können Pulse von Protonen und anderen positiv geladenen Ionen mit Teilchenenergien von einigen MeV pro Nukleon erzeugt werden. Die Charakterisierung dieser Teilchenstrahlung erfordert die Identifizierung der Ionenspezies und die Bestimmung ihrer spektralen Verteilung möglichst nach jedem Puls. Im Rahmen dieser Diplomarbeit wurden zwei Spektrometer entwickelt und am DRACO-Lasersystem des Forschungszentrums Dresden implementiert. Neben der Inbetriebnahme eines Thomson-Spektrometers mit einer Mikrokanalplatte und einem Fluoreszenzschirm als Auslese erfolgte die Entwicklung eines Flugzeitspektrometers. Die Verwendung einer Mikrokanalplatte mit nur 180ps Anstiegszeit als Signalverstärker sorgt darin für eine verbesserte Energieauflösung und einen flexibleren Einsatz im Experimentierbetrieb. Ein dem Flugzeitsignal überlagertes Störsignal, welches durch die Einstreuungen eines elektromagnetischen Impulses in den Aufbau verursacht wurde, konnte erfolgreich durch die Anwendung verschiedener Filter unterdrückt werden. Als Ergebnis dieser Arbeit steht eine anwendungsbereite Diagnostik für laserbeschleunigte Protonen und Ionen zur Verfügung. / By focusing an ultra-short high-intensity laser pulse on a solid target, pulses of protons and other positive charged ions with energies of several MeV per nucleon are generated. It is necessary to identify the species of those particles and obtain their energy spectra in a single-shot regime. Within this diploma thesis two spectrometers have been developed and implemented in the DRACO-laboratory of the Forschungszentrum Dresden. Besides a Thomson spectrometer with read-out via microchannel plate and phosphor screen, a time-of-flight spectrometer was developed. The usage of a microchannel plate with 180ps rise time as a signal amplifier leads therein to a better energy resolution and a more flexible handling in experimental operation. A noise signal generated by stray pick-up of an electromagnetic pulse and superimposing the time-of-flight signal was considerably reduced by the application of different filters. As a result of this work a ready-to-use diagnostic for laser accelerated protons and ions is available.
162

Spray Cooling For Land, Sea, Air And Space Based Applications, A Fluid Managment System For Multiple Nozzle Spray Cooling And A Guide To High Heat Flux Heater Design

Glassman, Brian 01 January 2005 (has links)
This thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and space environments have on the cooling system and what technologies could be enabled in each environment with the aid of spray cooling. In particular, the heat exchanger, condenser and radiator are analyzed in their corresponding environments. Chapter three presents an experimental investigation of a fluid management system for a large area multiple nozzle spray cooler. A fluid management or suction system was used to control the liquid film layer thickness needed for effective heat transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded fluid suction system was constructed. Two surfaces were spray tested one being a clear grooved Plexiglas plate used for visualization and the other being a bottom heated grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system utilized an array of thin copper tubes to extract excess liquid from the cooled surface. Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 1 L/min per nozzle. It was found that the fluid management system provided fluid removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle configuration were found with and without the aid of the fluid management system. It was found that the fluid management system increased heat fluxes on the average of 30 W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at respective 10[degrees]C & 15[degrees]C values of superheat. The heat transfer data more closely resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer was due to flooding occurring which made the heat transfer mechanism mainly forced convective boiling and not spray cooling. Finally, Chapter four gives a detailed guide for the design and construction of a high heat flux heater for experimental uses where accurate measurements of surface temperatures and heat fluxes are extremely important. The heater designs presented allow for different testing applications; however, an emphasis is placed on heaters designed for use with spray cooling.
163

Mean-Field Free-Energy Lattice Boltzmann Method for Liquid-Vapor Interfacial Flows

Li, Shi-Ming 10 December 2007 (has links)
This dissertation includes a theoretical and numerical development to simulate liquid-vapor flows and the applications to microchannels. First, we obtain a consistent non-local pressure equation for simulating liquid-vapor interfacial flows using mean-field free-energy theory. This new pressure equation is shown to be the general form of the classical van der Waals" square-gradient theory. The new equation is implemented in two-dimensional (2D) D2Q7, D2Q9, and three-dimensional (3D) D3Q19 lattice Boltzmann method (LBM). The three LBM models are validated successfully in a number of analytical solutions of liquid-vapor interfacial flows. Second, we have shown that the common bounceback condition in the literature leads to an unphysical velocity at the wall in the presence of surface forces. A few new consistent mass and energy conserving velocity-boundary conditions are developed for D2Q7, D2Q9, and D3Q19 LBM models, respectively. The three LBM models are shown to have the capabilities to successfully simulate different wall wettabilities, the three typical theories or laws for moving contact lines, and liquid-vapor channel flows. Third, proper scaling laws are derived to represent the physical system in the framework of the LBM. For the first time, to the best of the author's knowledge, we obtain a flow regime map for liquid-vapor channel flows with a numerical method. Our flow map is the first flow regime map so far for submicrochannel flows, and also the first iso-thermal flow regime map for CO₂ mini- and micro-channel flows. Our results show that three major flow regimes occur, including dispersed, bubble/plug, and liquid strip flow. The vapor and liquid dispersed flows happen at the two extremities of vapor quality. When vapor quality increases beyond a threshold, bubble/plug patterns appear. The bubble/plug regimes include symmetric and distorted, submerged and non-wetting, single and train bubbles/plugs, and some combination of them. When the Weber number<10, the bubble/plug flow regime turns to a liquid strip pattern at the increased vapor quality of 0.5~0.6. When the Weber number>10, the regime transition occurs around a vapor quality of 0.10~0.20. In fact, when an inertia is large enough to destroy the initial flow pattern, the transition boundary between the bubble and strip regimes depends only on vapor quality and exists between x=0.10 and 0.20. The liquid strip flow regimes include stratified strip, wavy-stratified strip, intermittent strip, liquid lump, and wispy-strip flow. We also find that the liquid-vapor interfaces become distorted at the Weber number of 500~1000, independent of vapor quality. The comparisons of our flow maps with two typical experiments show that the simulations capture the basic and important flow mechanisms for the flow regime transition from the bubble/plug regimes to the strip regimes and from the non-distorted interfaces to the distorted interfaces. Last, our available results show that the flow regimes of both 2D and 3D fall in the same three broad categories with similar subdivisions of the flow regimes, even though the 3D duct produces some specific 3D corner flow patterns. The comparison between 2D and 3D flows shows that the flow map obtained from 2D flows can be generally applied to a 3D situation, with caution, when 3D information is not available. In addition, our 3D study shows that different wettabilities generate different flow regimes. With the complete wetting wall, the flow pattern is the most stable. / Ph. D.
164

[pt] MODELAGEM DE UM CIRCUITO DE TERMOSSIFÃO DE BAIXO IMPACTO AMBIENTAL COM APLICAÇÃO EM RESFRIAMENTO DE ELETRÔNICOS / [en] MODELING OF A TWO-PHASE THERMOSYPHON LOOP WITH LOW ENVIRONMENTAL IMPACT REFRIGERANT APPLIED TO ELECTRONIC COOLING

VERONICA DA ROCHA WEAVER 04 October 2021 (has links)
[pt] Diante dos constantes avanços da tecnologia os dispositivos eletrônicos vêm passando por um processo de miniaturização, ao mesmo tempo em que sustentam um aumento de potência. Essa tendência se mostra um desafio para seu gerenciamento térmico, uma vez que os sistemas de resfriamento típicos para eletrônicos utilizam ar como fluido de trabalho, e o seu baixo coeficiente de transferência de calor limita sua capacidade de atender às necessidades térmicas da indústria atual. Nesse sentido, o resfriamento bifásico tem sido considerado uma solução promissora para fornecer resfriamento adequado para dispositivos eletrônicos. Circuitos de termossifão bifásico combinam a tecnologia de resfriamento bifásico com sua inerente natureza passiva, já que o sistema não requer uma bomba para fornecer circulação para seu fluido de trabalho, graças às forças da gravidade e de empuxo. Um dissipador de calor de microcanais, localizado bem em cima do dispositivo eletrônico, dissipa o calor gerado. Isto o torna uma solução de baixo custo e energia. Além disso, ter um circuito de termossifão operando com um refrigerante de baixo GWP, como o R-1234yf, resulta em baixo impacto para o meio ambiente, uma vez que é um refrigerante ecologicamente correto e o sistema tem baixo ou nenhum consumo de energia. Este trabalho fornece um modelo numérico detalhado para a simulação de um circuito de termossifão bifásico, operando em condições de regime permanente. O circuito compreende um evaporador (chip e dissipador de calor de micro-aletas), um riser, um condensador refrigerado a água de tubo duplo e um downcomer. Equações fundamentais e constitutivas foram estabelecidas para cada componente. Um método numérico de diferenças finitas, 1-D para o escoamento do fluido por todos os componentes do sistema, e 2-D para a condução de calor no chip e evaporador foi empregado. O modelo foi validado com dados experimentais para o refrigerante R134a, mostrando uma discrepância em relação ao fluxo de massa em torno de 6 por cento, para quando o sistema operava sob regime dominado pela gravidade. A pressão de entrada do evaporador prevista apresentou um erro relativo máximo de 4,8 por cento quando comparada aos resultados experimentais. Além disso, a maior discrepância da temperatura do chip foi inferior a 1 grau C. Simulações foram realizadas para apresentar uma comparação de desempenho entre o R134a e seu substituto ecologicamente correto, R1234yf. Os resultados mostraram que quando o sistema operava com R134a, ele trabalhava com uma pressão de entrada no evaporador mais alta, assim como, com um fluxo de massa mais alto. Por causa disso, o R134a foi capaz de manter a temperatura do chip mais baixa do que o R1234yf. No entanto, essa diferença na temperatura do chip foi levemente inferior a 1 grau C, mostrando o R1234yf como comparável em desempenho ao R134a. Além disso, o fator de segurança da operação do sistema foi avaliado para ambos os refrigerantes, e para um fluxo de calor máximo do chip de 33,1 W/cm2, R1234yf mostrou um fator de segurança acima de 3. Isso significa que o circuito de termossifão pode operar com segurança abaixo do ponto crítico de fluxo de calor. Dada a investigação sobre a comparação de desempenho dos refrigerantes R134a e R1234yf, os resultados apontaram o R1234yf como um excelente substituto ecologicamente correto para o R134a, para operação em um circuito de termossifão bifásico. / [en] Given the constant advances in technology, electronic devices have been going through a process of miniaturization while sustaining an increase in power. This trend proves to be a challenge for thermal management since commonly electronic cooling systems are air-based, so that the low heat transfer coefficient of air limits its capacity to keep up with the thermal needs of today s industry. In this respect, two-phase cooling has been regarded as a promising solution to provide adequate cooling for electronic devices. Two-phase thermosyphon loops combine the technology of two-phase cooling with its inherent passive nature, as the system does not require a pump to provide circulation for its working fluid, thanks to gravity and buoyancy forces. A micro-channel heat sink located right on top of the electronic device dissipates the heat generated. This makes for an energy and cost-efficient solution. Moreover, having a thermosyphon loop operating with a low GWP refrigerant such as R-1234yf results in low impact for the environment since it is an environmentally friendly refrigerant, and the system has low to none energy consumption. This work provides a detailed numerical model for the simulation of a two-phase thermosyphon loop operating under steady-state conditions. The loop comprises an evaporator (chip and micro-fin heat sink), a riser, a tube-in-tube water-cooled condenser and a downcomer. Fundamental and constitutive equations were established for each component. A finite-difference method, 1-D for the flow throughout the thermoysphon s components and 2-D for the heat conduction in the evaporator and chip, was employed. The model was validated against experimental data for refrigerant R134a, showing a mass flux discrepancy of around 6 percent for when the system operated under gravity dominant regime. The predicted evaporator inlet pressure showed a maximum relative error of 4.8 percent when compared to the experimental results. Also, the chip temperature s largest discrepancy was lower than 1 C degree. Simulations were performed to present a performance comparison between R134a and its environmentally friendly substitute, R1234yf. Results showed that when the system operated with R134a, it yielded a higher evaporator inlet pressure as well as a higher mass flux. Because of that, R134a was able to keep the chip temperature lower than R1234yf. Yet, that difference in chip temperature was slightly lower than 1 C degree, showing R1234yf as comparable in performance to R134a. In addition, the safety factor of the system s operation was evaluated for both refrigerants, and for a maximum chip heat flux of 33.1 W/cm2, R1234yf showed a safety factor above 3. This means the thermosyphon loop can operate safely under the critical heat flux. Given the investigation on the performance comparison of refrigerants R134a and R1234yf, results pointed to R1234yf being a great environmentally friendly substitute for R134a for the two-phase thermosyphon loop.

Page generated in 0.3361 seconds