• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 638
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 50
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Solution-based synthesis and processing of nanocrystalline ZrB₂-based composites

Xie, Yanli 24 November 2008 (has links)
Zirconium- and tantalum-based diborides, and diboride/carbide composites are of interest for ultra-high temperature applications requiring improved thermomechanical and thermochemical stability. This thesis focuses on the synthesis, processing and sintering of nanocrystalline powders with Zr- and Ta-based diboride/carbide/silicide compositions. A solution-based processing method was developed to prepare reactive mixtures that were precursors for ZrB₂-based powders. The precursors reacted to form the ceramic powders after suitable pyrolysis and borothermal/carbothermal reduction heat treatments. Single-phase ZrB₂ powders were prepared with initial composition of C/Zr = 4.8 and B/Zr = 3.0. ZrB₂-based composite powders with ZrC, ZrO₂, TaB₂, TaC, SiC, TaSi₂ and B₄C were prepared with particle sizes of 10-500 nm for different phases based SEM micrographs. The composite powders were highly sinterable with proper processing methods developed to avoid and remove oxide impurities. The relative densities of ZrB₂/B₄C, ZrB₂/TaB₂, ZrB₂/TaB₂/B4C, ZrB₂/TaSi₂ were in the range of 91%-97% after pressureless sintering at 2020 ℃ for 1 h or 30 min.
322

Fatigue modeling of nano-structured chip-to-package interconnections

Koh, Sau W. 09 January 2009 (has links)
Driven by the need for increase in system¡¯s functionality and decrease in the feature size, International Technology Roadmap for Semi-conductors has predicted that integrated chip packages will have interconnections with I/O pitch of 90 nm by the year 2018. Lead-based solder materials that have been used for many decades will not be able to satisfy the thermal mechanical requirements of these fines pitch packages. Of all the known interconnect technologies, nanostructured copper interconnects are the most promising for meeting the high performance requirements of next generation devices. However, there is a need to understand their material properties, deformation mechanisms and microstructural stability. The goal of this research is to study the mechanical strength and fatigue behavior of nanocrystalline copper using atomistic simulations and to evaluate their performance as nanostructured interconnect materials. The results from the crack growth analysis indicate that nanocrystalline copper is a suitable candidate for ultra-fine pitch interconnects applications. This study has also predicts that crack growth is a relatively small portion of the total fatigue life of interconnects under LCF conditions. The simulations result conducted on the single crystal copper nano-rods show that its main deformation mechanism is the nucleation of dislocations. In the case of nanocrystalline copper, material properties such as elastic modulus and yield strength have been found to be dependent on the grain size. Furthermore, it has been shown that there is competition between the dislocation activity and grain boundary sliding as the main deformation mode This research has shown that stress induced grain coarsening is the main reason for loss of mechanical performance of nanocrystalline copper during cyclic loading. Further, the simulation results have also shown that grain growth during fatigue loading is assisted by the dislocation activity and grain boundary migration. A fatigue model for nanostructured interconnects has been developed in this research using the above observations Lastly, simulations results have shown that addition of the antimony into nanocrystalline copper will not only increase the microstructure stability, it will also increase its strength.
323

Abberation-corrected atomic number contrast scanning transmission electrion [sic] microscopy of nanocrystals and nanomaterial-based systems for use in next-generation photovoltaic devices

Watt, Tony L. January 2008 (has links)
Thesis (M. S. in Interdisciplinary Materials Science)--Vanderbilt University, Aug. 2008. / Title from title screen. Includes bibliographical references.
324

Structural analysis of palladium nanocrystals and nanostructures on the strontium titanate (001) surface

Marsh, H. L. January 2008 (has links)
No description available.
325

Vésicules lipidiques biomimétiques décorées par un assemblage multicouche nanocristaux de cellulose/xyloglucane : élaboration et caractérisation mécanique / Biomimetitc lipidic vesicles coated with a cellulose nanocrystals/xyloglucan multilayer assembly : elaboration and mechanical characterization

Radavidson, Harisoa 15 December 2016 (has links)
Contrairement à leurs homologues animales, les cellules végétales sont entourées d’une fine enveloppe de polysaccharides appelée paroi primaire, dont la principale structure portante est un réseau de microfibrilles de cellulose reliées entre elles par des hémicelluloses. L’objectif de ce travail est de mettre au point des capsules biomimétiques de la paroi végétale qui puissent servir de système modèle dans l’étude des propriétés mécaniques de ce matériau naturel. Pour ce faire, des vésicules géantes unilamellaires d’un diamètre moyen de 20 µm ont été utilisées comme support de dépôts couche-par-couche de nanocristaux de cellulose (les sous-éléments des microfibrilles) et de xyloglucane (l’hémicellulose la plus répandue) jusqu’à une dizaine de bicouches, les capsules ainsi obtenues ayant été caractérisées par microscopie confocale. Leur comportement en déformation en réponse à une pression osmotique a pu être observé : leur dégonflement a donné lieu à l’apparition de diverses morphologies dont certaines sont similaires aux formes de coques minces de matériau isotrope dégonflées, tandis que leur comportement en gonflement est comparable à la réponse d’un matériau viscoélastique. Enfin, des expériences de nano-indentation par microscopie à force atomique ont été effectuées pour mesurer la rigidité de la paroi des capsules. Leur module d’Young a pu être déduit des courbes de force-déformation et s’avère être compris entre 6 et 18 MPa, ce qui est du même ordre de grandeur que les valeurs obtenues par des mesures similaires effectuées sur des parois végétales naturelles. / Unlike their animal counterparts, plant cells are surrounded by a thin polysaccharide-rich envelop called the primary wall, in which the main load-bearing structure is a network of cellulose microfibrils tethered by hemicellulose. This work aims at designing plant cell wall mimicking capsules that could be used as a model system in the mechanical characterization of this natural material. To do so, we used giant unilamellar vesicles with an average diameter of 20 µm as a template for the layer-by-layer deposition of cellulose nanocrystals (the microfibrils sub-elements) and xyloglucan (the most common hemicellulose) up to ten bilayers, the resulting capsules being characterized by confocal microscopy. Their deformation behaviour under osmotic stress could be observed : deflation of the capsules led to various morphologies, some of them similar to what is observed for thin deflated shells of isotropic material, while their response to swelling resembled that of a viscoelastic material. Nano-indentation experiments were eventually performed using an atomic force microscope to probe the stiffness of the capsules wall. Their Young’s modulus could be deduced from the force-depth curves and found to be in the 6-18 MPa range, which is in the same order of magnitude of values obtained with similar measurements done on natural plant cell walls.
326

Tuning the size and surface of InP nanocrystals by microwave-assisted ionic liquid etching

Siramdas, Raghavender January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Emily McLaurin / Semiconductors are materials whose conductivity is between metals and insulators. Semiconductor nanocrystals (NCs) have sizes in the range 2 to 10 nm. Because of their unique optical properties like tunable emission wavelength, narrow emission peak, and stability over dyes, they have potential applications in displays. Indium phosphide (InP) is considered a less toxic alternative to commercially used cadmium-based semiconductor NCs. Microwave-assisted (MA) methods using ionic liquids (ILs) afford fast reaction heating rates because of the good MW absorbing capacity of ILs. For tuning size and surface, which are some of the important problems associated with the InP NCs, new synthetic methods are reported herein. In MAIL etching HF generated in the microwave reaction etches the InP NCs surface. Pyridinium and imidazolium based ILs containing tetrafluoroborate (BF₄⁻) and hexafluorophosphate (PF₆⁻) ions yield luminescent NCs. In a silicon carbide (SiC) reaction vessel, which blocks most of the microwaves penetrating into the reaction, bigger NCs form than those from a Pyrex reaction vessel because of the higher reaction temperatures in the SiC vessel. By changing microwave set-power (SP), different reaction times can be achieved. Though a small degree of change in average NC diameter of the NCs is observed at different SPs and reaction temperatures, addition of dodecylamine (DDA) yields NCs with average sizes between 3.2 to 4.2 nm with a broad size distribution. At lower SPs smaller NCs form and at higher SPs bigger NCs form. NC luminescence can be tuned from green (545 nm) to red (630 nm) in the visible region with quantum yields as high as 30%. Rapid heating and InP precursor activation might be responsible for the larger change in NC size. The effect of DDA on NC size is also verified by microwave reactions in SiC vessels. ILs containing PF₆⁻ ions at 280 °C will modify the surface of the NCs so the NC dispersibility changes from non-polar (toluene) to polar (DMSO) as the amount of IL increases. This is due to ligand stripping, which is the removal of large palmitic ligands from the NC surface. These NCs have broad absorption features and emission peaks with QYs of up to 30%. Fourier transform infrared spectroscopy indicates the absence of palmitic acid ligands on the NC surface and zeta potential measurements indicate the presence of anions on the NC surface. From X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy, the inorganic ion PO₂F₂⁻ is identified on the NCs surface.
327

Development of stimuli-responsive cellulose nanocrystals hydrogels for smart applications / Développement d’hydrogels de Nanocristaux de cellulose stimulables pour des applications fonctionnelles

Gicquel, Erwan 01 December 2017 (has links)
L’originalité de ce projet consiste au développement et à l’étude de nouvelles structures hybrides à base de nanocelluloses et de polymères stimulables. En particulier, c’est le design d’hydrogels aux propriétés thermosensibles qui est visé. Les nanocelluloses - nanoparticules issues de la cellulose - sont de deux types : les nanocristaux de cellulose (CNCs) et les nanofibrilles de cellulose (CNFs) et possèdent des propriétés bien particulières. Cette étude s’est concentrée sur l’élaboration d’hydrogels de CNCs. Plusieurs polymères thermosensibles ont été utilisés pour leur biocompatibilité et leur température de solution critique (LCST) aux abords de la température du corps humain. Ce travail a consisté en (i) la préparation des systèmes sur les principes de la chimie verte, (ii) l’étude rhéologique de ces gels thermosensibles et (iii) l’élaboration d’applications à forte valeur ajoutée pour ces biomatériaux uniques. A travers l’utilisation de grands équipements (SANS, SAXS), les interactions physico-chimiques CNCs/polymères ont été étudiées. L’utilisation de block copolymères a permis l’obtention de suspension de CNCs aux propriétés rhéologiques spécifiques : de liquide a température ambiante à gel viscoélastique à température du corps. D’un point vue applicatif, les hydrogels ainsi réalisés ont permis le déploiement de systèmes injectables pour le biomédical ainsi que des surfaces thermosensibles.Mots clés : nanocristaux de cellulose, hydrogel, thermosensible, stimulable / This project consists to develop and study new hybrid structures based on nanocelluloses and stimuli-responsive polymers, in particular, thermo-responsive polymers. Nanocelluloses - nanoparticles extracted from cellulose - exist in two forms: cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). This study focused on the design of CNCs hydrogels with stimuli-responsive polymers. Several thermo-responsive polymers have been used for their biocompatibility and lower critical solution temperature (LCST) close to body temperature. This work consisted of (i) preparation of systems using the principles of green chemistry, (ii) the rheological study of these thermo-sensitive hydrogels, and (iii) the development of smart applications for these unique biomaterials. Through the use of state of the art technologies (SANS, SAXS), physicochemical interactions between the polymers and CNCs have been studied. The use of block copolymers made it possible to create CNCs-based hydrogels with specific rheological properties: liquid at ambient temperature to viscoelastic gel at body temperature. These hydrogels can be used in the creation of injectable systems for biomedical applications, as well as thermosensitive surfaces.Key-words: Cellulose nanocrystals, hydrogel, thermo-responsive, stimuli-responsive
328

Nanostructured materials for optoelectronic devices

Li, Guangru January 2016 (has links)
This thesis is about new ways to experimentally realise materials with desired nano-structures for solution-processable optoelectronic devices such as solar cells and light-emitting diodes (LEDs), and examine structure-performance relationships in these devices. Short exciton diffusion length limits the efficiency of most exciton-based solar cells. By introducing nano-structured architectures to solar cells, excitons can be separated more effectively, leading to an enhancement of the cell’s power conversion efficiency. We use diblock copolymer lithography combined with solvent-vapour-assisted imprinting to fabricate nano-structures with 20-80 nm feature sizes. We demonstrate nanostructured solar cell incorporating the high-performance polymer PBDTTT-CT. Furthermore, we demonstrated the patterning of singlet fission materials, including a TIPS-pentacene solar cell based on ZnO nanopillars. Recently perovskites have emerged as a promising semiconductor for optoelectronic applications. We demonstrate a perovskite light-emitting diode that employs perovskite nanoparticles embedded in a dielectric polymer matrix as the emissive layer. The emissive layer is spin-coated from perovskite precursor/polymer blend solution. The resultant polymer-perovskite composites effectively block shunt pathways within the LED, thus leading to an external quantum efficiency of 1.2%, one order of magnitude higher than previous reports. We demonstrate formations of stably emissive perovskite nanoparticles in an alumina nanoparticle matrix. These nanoparticles have much higher photoluminescence quantum efficiency (25%) than bulk perovskite and the emission is found to be stable over several months. Finally, we demonstrate a new vapour-phase crosslinking method to construct full-colour perovskite nanocrystal LEDs. With detailed structural and compositional analysis we are able to pinpoint the aluminium-based crosslinker that resides between the nanocrystals, which enables remarkably high EQE of 5.7% in CsPbI3 LEDs.
329

Elaboration et déformation de systèmes biomimétiques innovants / Elaboration and deformability of biomimetic systems

Bailly, Antoine 27 November 2012 (has links)
La déformation des cellules végétales durant leur croissance génère des formes anisotropes variées. L'enveloppe des cellules en croissance, appelée paroi primaire végétales, est une couche fine, flexible et extensible, faite d'un réseau de microfibrilles de cellulose reliées entre elles par des hémicellulose qui ont une extension directionnelle. Le but de ce travail est d'élaborer des microcapsules biomimétiques possédant une structure similaire à la paroi primaire et d'étudier leur déformation sous une contrainte mécanique. Pour cela, nous avons utilisé les fortes interactions entre les nanocristaux de cellulose (sous-unités des microfibrilles) et les xyloglucanes (hémicellulose la plus répandue) déjà utilisée pour construire des multicouches plan [1]. Pour reproduire la géométrie des cellules, nous avons fabriqué des microcapsules multicouches à partir de nanocristaux de cellulose et de xyloglucanes, en combinant une émulsion d'huile dans l'eau, de dimension de 20µm environ, avec un dépôt couche par couche conduisant à des capsules biomimétiques. La régularité du dépôt de couche a été suivit par un marquage fluorescent sélectif, l'épaisseur et l'organisation de la paroi ont été caractérisées en microscopie électronique. Par séchage et évaporation du coeur d'huile, les capsules ainsi dégonflées présentent diverses formes révélées par des reconstructions 3D à partir de coupes de microscopie confocale. La relation entre les formes obtenus, les dimensions caractéristiques et les propriétés mécaniques de la paroi a été étudiée [2]. Le contrôle de la taille et de l'épaisseur de la capsule permet d'explorer diverses situations de déformations. [1] B. Jean*, L. Heux, F. Dubreuil, G. Chambat & F. Cousin, Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers, Langmuir, 25(7), 3920-3923 (2009) [2] C. Quilliet, C. Zoldesi, C. Riera, A. van Blaaderen, and A. Imhof Anisotropic colloids through non-trivial buckling Eur. Phys. J. E, 27, 13{20} (2008) / The deformation of plant cells during their growth can generate various anisotropic shapes. The envelop of the growing cells, also called primary wall of plants, is a thin, flexible and extensible layer made of a network of cellulose microfibrils linked by hemicellulose tethers, that can have directional extension. The goal of this work is to elaborate biomimetic microcapsules with structures similar to the plant primary walls and explore their deformation under mechanical stress. For that purpose, we took advantage of the strong interaction of cellulose nanocrystals (the microfibrils sub-elements) with xyloglucan (the most common hemicellulose) already used to build planar multilayer systems [1]. In order to reproduce the cell geometry, we successfully build multilayered microcapsules from cellulose nanocrystals and xyloglucans, by combining oil in water emulsions with dimensions around 20 µm with layer-by-layer deposit, leading to biomimetic microcapsules. The regularity of the layer deposition has been followed by selective fluorescent tagging and the wall thickness and organization was characterized by electron microscopy. Upon drying and evaporation of the oily core, the deflated microcapsules exhibited various shapes as revealed by 3D reconstruction from confocal microscopy slices. We have investigate the relationships between the obtained shapes in relation to the characteristic dimensions and the mechanical properties of the wall [2]. The control of the capsule size and thickness allows exploring various situations in terms of deformation behavior. [1] B. Jean*, L. Heux, F. Dubreuil, G. Chambat & F. Cousin, Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers, Langmuir, 25(7), 3920-3923 (2009) [2] C. Quilliet, C. Zoldesi, C. Riera, A. van Blaaderen, and A. Imhof Anisotropic colloids through non-trivial buckling Eur. Phys. J. E, 27, 13{20} (2008)
330

Synthèse et caractérisations de matériaux composites à base de nanocristaux de Ge pour des applications optroniques / Synthesis and characterizations of Ge nanocrystals based materials for optoelectronical application

Parola, Stéphanie 27 September 2012 (has links)
Les nanomatériaux, grâce à leurs propriétés optiques et électroniques, peuvent être une opportunité pour le développement d'une nouvelle génération de cellules photovoltaïques à hauts rendements et bas coût. Les boîtes quantiques sous la forme de nanocristaux semi-conducteurs permettent de réaliser des matériaux à énergie de gap variable, propriété très recherchée pour un absorbeur solaire. Ce travail est consacré à l'élaboration et à la caractérisation de matériaux à base de nanocristaux de Ge dans différentes matrices. Une source à agrégats, procédé original de pulvérisation sous vide, a été étudiée pour synthétiser des nanoparticules de Ge. Cette technique de dépôt permet la formation de nanoparticules de Ge bien cristallisées (pour un substrat maintenu à température ambiante) et d'avoir un très bon contrôle de la taille de ces nanocristaux. Des caractérisations optiques de nanocristaux de Ge enfouis dans des matrices isolantes et semi-conductrices ont permis de démontrer la présence d’effet de confinement quantique dans ces cristaux et la possibilité de moduler leur énergie de gap sur une large gamme d'énergie entre 0,85 et 1,55 eV. Afin d’extraire et de collecter des charges photogénérées dans les nanocristaux, nous nous sommes intéressés au couple nanocristaux de Ge / matrice de ZnO:Al qui permet de séparer spatialement les photoporteurs (alignement en type II). La structure composée de nanocristaux de Ge recouverts d'une matrice de ZnO:Al sur un substrat de Si (p+), a permis de mettre en évidence un effet photovoltaïque pour lequel la génération de porteurs s'effectue uniquement dans les nanocristaux de Ge. / The particular properties of nanomaterials can be an opportunity for developing a new low cost and a high efficient generation of solar cells. Semiconducting nanocrystals can be used as quantum dots to realize band gap engineering by varying the nanocrystals size. The subject of research is to synthesize a composite material based on Ge nanocrystals embedded in various matrices and perform characterizations. A nanocluster source, under vacuum sputtering setup, was used to synthesize Ge nanoparticles. The vapor phase condensation leads to the formation of well crystallized nanoparticles, for a deposition performed at room temperature. This synthesis method allows a good control of the nanocrystals size and the nanocrystals quantity inserted in the material. Optical properties of Ge nanocrystals embedded in insulating and semiconducting matrices were studied. We have demonstrated the quantum dot behavior of Ge nanocrystals. We have also shown the ability to modulate the nanocrystals band gap from 0.85 to 1.55 eV by varying the nanocrystals size and the potential barriers. Optoelectronical characterizations were performed to estimate the ability to extract and collect the carriers photogenerated in the Ge nanocrystals by light absorption. Ge nanocrystals in ZnO:Al matrix forms type-II quantum dots. This heterostructure is very interesting because it allows the spatial separation of the carriers while keeping the quantum confinement properties. We have brought out a photovoltaic effect with the structure p+-Si wafer / Ge nanocrystals / ZnO:Al matrix. We have also demonstrated that the carrier generation only occurs in the Ge nanocrystals.

Page generated in 0.0627 seconds