• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 67
  • 42
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 55
  • 53
  • 47
  • 40
  • 40
  • 39
  • 36
  • 32
  • 32
  • 30
  • 28
  • 24
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

DEVELOPMENT AND VALIDATION OF A SEMI-PHYSIOLOGICAL PHARMACOKINETIC (PBPK) MODEL TO PREDICT SYSTEMIC AND PULMONARY EXPOSURES AFTER INTRAVENOUS, ORAL ADMINISTRATION AND PULMONARY INHALATION OF SELECTED DRUGS, BUDESONIDE, TOBRAMYCIN AND CIPROFLOXACIN, IN HUMANS

Hanna, Bishoy 01 January 2018 (has links)
Using a semi-PBPK modeling/quantitative meta-analysis approach, this project investigated what factors affect pulmonary and systemic exposures of Budesonide (BUD), Tobramycin (TOB), and Ciprofloxacin (CIP) after inhalation: Three structurally different pulmonary disposition models were developed for each drug, including pulmonary absorption (all three), excretion (TOB and CIP) and sequestration (TOB) in a peripheral and central lung compartment. Systemic disposition parameters were estimated using available human mean plasma (cp(t)) and sputum (cs(t)) concentration profiles after IV administration, and GI absorption parameters were estimated from these profiles after oral administration. Pulmonary disposition parameters were estimated from cp(t) and cs(t) profiles after inhalation using various devices along with their published pulmonary deposition characteristics. Appropriate covariate models accounted for effects of Cystic Fibrosis on the systemic disposition/GI absorption for TOB and CIP. Monte Carlo Simulations (MCS) were used to optimize parameters and validate the final models and parameter spaces against published data. Despite limited available data, especially cs(t) for BUD and CIP (after IV administration), the point estimates for the final model parameters were mechanistically plausible for all three drugs and consistent with their known differences in physicochemical and ADME properties. Model predictions adequately described the observed cp(t) and cs(t) profiles as well as exposure metrics across studies. As the most lipophilic drug, BUD showed the fastest pulmonary absorption rates and highest Fpul (83%). TOB, a very hydrophilic drug, exhibited (intracellular) pulmonary sequestration, resulting in slow pulmonary absorption and excretion and low Fpul (10%). CIP - as zwitterion - showed relatively slow pulmonary absorption and excretion, leading to low Fpul (8%); pulmonary excretion accounted for 27% of CIP overall elimination. Results of a formal parameter sensitivity analysis demonstrated that, for all three drugs, after inhalation, (1) their systemic exposures (cp(t)) depend primarily on CLtot along with Fpul/sequestration combined with Foral; (2) increasing pulmonary exposures (cs(t)) can be accomplished by slowing down pulmonary absorption rates (kca) and/or slowing down mucociliary clearance from the lungs into the GI tract (kcm) – affirming the overall hypothesis guiding the project.
192

IRM de perfusion T1 dans le cancer de la prostate, analyse quantitative et étude de l’impact de la fonction d’entrée artérielle sur les capacités diagnostiques des paramètres pharmacocinétiques / Dynamic Contrast Enhanced - MRI of prostate cancer : quantitative analysis and study of the impact of arterial input function selection on the diagnosis accuracy of the pharmacokinetic parameters

Azahaf, Mustapha 15 December 2015 (has links)
La séquence d’IRM de perfusion pondérée T1 après injection de Gadolinium (Gd), appelée dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) fait partie du protocole d’IRM multiparamétrique (IRM-mp) réalisée pour le bilan d’extension du cancer prostatique (CaP). Le rationnel pour l’utilisation de cette séquence est d’une part le rôle capital de la néoangiogénèse dans le développement et la dissémination du CaP et d’autre part la possibilité d’imager l’angiogénèse in vivo et de façon non invasive. L’analyse quantitative nécessite un post-traitement multi-étapes complexe, dont le principe repose sur la modélisation pharmacocinétique (PC) de la biodistrubtion du Gd. Elle permet de calculer des paramètres PC reflétant la perméabilité capillaire et/ou la perfusion. Dans le CaP, ces paramètres PC ont montré leur potentiel pour évaluer l’agressivité tumorale, le pronostic, l’efficacité d’un traitement et/ou pour déterminer la dose efficace d’une nouvelle molécule anti-angiogéniques ou antivasculaires en cours de développement. Néanmoins, ils manquent de reproductibilité, notamment du fait des différentes techniques de quantifications utilisées par les logiciels de post-traitement.Nous avons développé au sein du laboratoire un outil de quantification capable de calculer une cartographie T1(0) à partir de la méthode des angles de bascule variables, nécessaire pour convertir les courbes du signal en courbe de concentration du Gd (Ct); de déterminer la fonction d’entrée artérielle (AIF – arterial input function) dans l’artère fémorale (Indivuduelle – Ind) ou lorsque cela n’était pas possible, d’utiliser une AIF issue de la littérature, telle que celle de Weinmann (W) ou de Fritz-Hansen (FH) ; et d’utiliser deux modèles PC, celui de Tofts et celui de Tofts modifié. Le logiciel a été validé sur des données simulées et sur une petite série clinique.Nous avons ensuite étudié l’impact du choix de la fonction d’entrée artériel sur les paramètres PC et notamment sur leur capacité à distinguer le CaP du tissu sain. 38 patients avec un CaP (>0,5cc) de la zone périphérique (ZP) ont été rétrospectivement inclus. Chaque patient avait bénéficié d’une IRM-mp sur laquelle deux régions d’intérêt (RI) : une tumorale et une bénigne ont été sélectionnées en utilisant une corrélation avec des cartes histo-morphométriques obtenues après prostatectomie radicale. En utilisant trois logiciels d’analyse quantitative différents, les valeurs moyennes de Ktrans (constante de transfert), ve (fraction du volume interstitiel) and vp (fraction du volume plasmatique) dans les RI ont été calculées avec trois AIF différentes (AIF Ind, AIF de W et AIF de FH). Ktrans était le paramètre PC qui permettait de mieux distinguer le CaP du tissu sain et ses valeurs étaient significativement supérieures dans le CaP, quelque soit l’AIF ou le logiciel. L’AIF de W donnait des aires sous les courbes ROC (Receiver Operating Characteristic) significativement plus grandes que l’AIF de FH (0.002≤p≤0.045) et plus grandes ou égales à l’AIF Ind (0.014≤p≤0.9). L’AIF Ind et de FH avaient des aires sous les courbes ROC comparables (0.34≤p≤0.81). Nous avons donc montré que les valeurs de Ktrans et sa capacité à distinguer CaP du tissu sain variaient significativement avec le choix de l’AIF et que les meilleures performances étaient obtenues avec l’AIF de W. / Dynamic contrast enhanced (DCE)-MRI is a T1 weighted sequence performed before, during and after a bolus injection of a contrast agent (CA). It is included in the multi-parametric prostate MRI (mp-MRI) protocol using to assess the extent of prostate cancer (PCa). The rationale for using DCE-MRI in PCa is that on one hand angiogenesis has been shown to play a central role in the PCa development and metastasis and on the other hand that DCE-MRI is a non invasive method able to depict this angiogenesis in vivo. The quantitative analysis of DCE-MRI data is a complex and multi-step process. The principle is to use a pharmacokinetic (PK) model reflecting the theoretical distribution of the CA in a tissue to extract PK parameters that describe the perfusion and capillary permeability. These parameters are of growing interest, especially in the field of oncology, for their use in assessing the aggressiveness, the prognosis and the efficacy of anti-angiogenic or anti-vascular treatments. The potential utility of these parameters is significant; however, the parameters often lack reproducibility, particularly between different quantitative analysis software programs.Firstly, we developed a quantitative analysis software solution using the variable flip angle method to estimate the T1 mapping which is needed to convert the signal-time curves to CA concentration-time curves; using three different arterial input functions (AIF): an individual AIF (Ind) measured manually in a large artery, and two literature population average AIFs of Weinmann (W) and of Fritz-Hansen (FH); and using two PK models (Tofts and modified Tofts). The robustness of the software programs was assessed on synthetic DCE-MRI data set and on a clinical DCE-MRI data set. Secondly, we assessed the impact of the AIF selection on the PK parameters to distinguish PCa from benign tissue. 38 patients with clinically important peripheral PCa (≥0.5cc) were retrospectively included. These patients underwent 1.5T multiparametric prostate MR with PCa and benign regions of interest (ROI) selected using a visual registration with morphometric reconstruction obtained from radical prostatectomy. Using three pharmacokinetic (PK) analysis software programs, the mean Ktrans, ve and vp of ROIs were computed using three AIFs: Ind-AIF, W-AIF and FH-AIF. The Ktrans provided higher area under the receiver operating characteristic curves (AUROCC) than ve and vp. The Ktrans was significantly higher in the PCa ROIs than in the benign ROIs. AUROCCs obtained with W-AIF were significantly higher than FH-AIF (0.002≤p≤0.045) and similar to or higher than Ind-AIF (0.014≤p≤0.9). Ind-AIF and FH-AIF provided similar AUROCC (0.34≤p≤0.81).We have then demonstrated that the selection of AIF can modify the capacity of the PK parameter Ktrans to distinguish PCa from benign tissue and that W-AIF yielded a similar or higher performance than Ind-AIF and a higher performance than FH-AIF.
193

Application of modeling-based approaches to study the pharmacokinetics and pharmacodynamics of Delta-9-tetrahydrocannabinol (THC) and its active metabolite

Awasthi, Rakesh 01 January 2017 (has links)
The medical use of marijuana is increasing, yet little is known about the exposure-response relationships resulting in its psychoactive effects. Δ9-tetrahydrocannabinol (THC) and its active metabolite (11-hydroxy-THC; THC-OH) are the principal psychoactive components in marijuana. It is well known that the plasma concentrations of the psychoactive components of marijuana do not directly relate to the observed psychoactive effects. The presence of a counter-clockwise hysteresis in the plasma concentrations-effect plot demonstrates a temporal delay between the plasma concentrations and observed effect following the intravenous administration of THC. The overarching objective of this research was to better understand the relationship between the plasma and brain concentrations of the psychoactive components (THC and THC-OH) and the observable psychoactive effects after intravenous administration of THC, utilizing model-based approaches. Specifically, the pharmacokinetics were explored using population pharmacokinetic (Pop PK) and physiologically-based pharmacokinetic (PBPK) modeling whereas the pharmacodynamics (PD) of the psychoactive effect (“highness”) were explored using effect-compartment modeling and linking the PD to the PBPK-derived concentrations predicted in the brain and an assumed effect-site. A “hypothetical” effect compartment model was developed to characterize the observed delay in peak “highness” ratings. A direct relationship was established between the reported psychoactive effects (“highness” or intoxication) and the predicted effect-site concentrations of both components (THC and THC-OH) using this effect-compartment modeling approach. The faster plasma to effect compartment equilibration for THC-OH indicated a more rapid equilibration of the active metabolite between plasma and the effect-site (biophase) than for the parent THC. In addition, a PBPK modeling approach was pursued to predict and relate the brain concentrations of THC and THC-OH to the psychoactive effect. The relationship between the effect and the predicted unbound brain concentration of THC indicated an indirect relationship, suggesting a temporal delay between brain concentrations of THC and observed effect. However, a direct relationship was observed between the observed effect and the unbound brain THC-OH concentrations. In addition, the unbound concentrations of THC-OH in the brain were predicted to be higher than the corresponding THC concentrations. These findings highlight the importance for the inclusion of THC-OH, in addition to THC, when relating the observed effect to the concentrations of the psychoactive components of marijuana. These models contribute to the understanding of the PK-PD relationships associated with marijuana use and are important steps in the prediction of the pharmacodynamic effects related to the psychoactive components in marijuana and establish an approach for investigating other THC-related effects.
194

1) Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating method 2) Pharmacokinetic modeling and Monte Carlo simulations in context of additional criteria for bioequivalence assessments 3) Pharmacokinetic prediction of levofloxacin accumulation in tissue and its association to tendinopathy

Pham, Loan 07 June 2014 (has links)
The thrust of this thesis is to study oral solid dosage formulation using hot melt coating method and to use pharmacokinetic modeling and simulation (PK M&S) as a tool that can help to predict pharmacokinetics of a drug in human and the probability of passing various bioequivalence criteria of the formulation based on the PK of the drug. Hot-melt coating using a new method, direct blending, was performed to create immediate and sustained release formulations (IR and SR). This new method was introduced to offer another choice to produce IR and SR drug delivery formulations using single and double coating layer of waxes onto sugar beads and/or drug loaded pellets. Twelve waxes were applied to coat sugar cores. The harder the wax the slower the drug was released from single coated beads. The wax coating can be deposited up to 28% of the weight of the core bead with 58% drug loading efficiency in the coating The cores were coated with single or double wax layers containing acetaminophen. Carnauba wax coated beads dissolved in approximately 6 hrs releasing 80% of loaded drug. However, when covered with another layer, the drug loaded beads released drug for over 20 hrs. When drug loaded pellets were used as cores, 33-58% drug loading was achieved. Double coated pellets exhibited a near zero order drug release for up to 16 hrs. Hot melt coating by direct blending using waxes is a simple process compared to conventional hot melt coating using coating pan or fluid bed coating machines. It offers an alternative way of making immediate, sustained drug release (IR, SR) and modified release (IR+SR) oral dosage forms of drugs which are stable at high temperature (100°C). The pellet-containing-drug coated formulations provide options when higher drug loading is warranted. It is required by the US Food and Drug Administration (FDA) that a new modified –release (MR) product or identical generic product be regarded as bioequivalent (BE) to the originators reference drug product. However, there are concerns that current regulatory criteria are not sufficient when evaluating bioequivalence (BE) for many MR products, and additional metrics for BE assessment of the products should be applied to ensure therapeutic equivalence. This study used pharmacokinetic modeling and simulation (M&S) to investigate 1) the probability of BE occurring between the MR test and reference products 2) the rates of false positive and true negative of the BE test; and 3) the estimation of the sample size in pivotal BE studies; all of which when partial area under the curves (pAUCs) were applied as additional BE criteria. Reference data of two MR forms of methylphenydate HCl (MPH) were simulated and obtained from literature (formulation Q and Metadate CD, respectively). Monte Carlo simulations were performed to simulate the test drug concentration profiles and BE assessment was carried out utilizing the mean (method 1) and individual concentration time curves (method 2). For formulation Q, adding pAUC₀₋[subscript Tmax] to current BE criteria reduced the possibility of passing BE from approximately 98% to 85%, with a true negative rate of 5%. The earlier the time points used to determine for pAUC before Tmax, the lower the chance of passing BE for the test product. The possibility of passing BE varied and depended on the coefficient of variations (CV) of T[subscript lag], K[subscript a] and K[subscript e] and that considerable variability in the parameters affected the earlier segments of the drug concentration profile curves more. Similar drug concentration time profiles between the test and reference products is recommended to ensure bioequivalence occurs with a reasonable subject sample size. A similar scenario was seen when Metadate CD was used as the reference product. PK M&S can help provide appropriate additional metrics to assure the BE test is a better tool ensuring therapeutic equivalence for MR products with little negative impact to generic manufacturers. Predictions can also be made about the required sample size and the chances of passing BE with any addition to the conventional three criteria for the test product. PK M&S was also used to predict drug concentrations of levofloxacin in tissue. Levofloxacin has been widely used in clinical practice as an effective broad-spectrum antimicrobial, however tendonitis and tendon rupture have been reported with increasing use of this agent. Here, these incidents will be assessed by investigating pharmacokinetic behavior of the compound to see if they are related to drug's tissue disposition. The PK model for levofloxacin was established. Mean concentration time profiles of single or multiple dosing of 500 mg levofloxacin following oral and IV infusion administration were simulated. Monte Carlo simulation was used to simulate the drug concentration time profiles in plasma (compartment 1) and tissue (compartment 2) after seven dosing regimens while varying the drug's elimination and distribution rates to see the effect of changing those rates have on the drug accumulation in tissue. Monte Carlo Simulation shows that low elimination rates affect the drug concentration in plasma and tissue significantly with the level in plasma rising up to 35 μg/mL at day 7. A normal elimination rate together with escalation of distribution rates from plasma to tissue could increase the tissue concentration after 7 doses to 9.5 µg/mL, a value that is more than twice that of normal. PK M&S can be used as an effective tool to evaluate drug concentration in different compartments (plasma and tissues, for example). The unexpectedly high concentration values in some cases may explain, at least in part, the reason of tendinopathy occurs in the clinical setting. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from June 7, 2012 - June 7, 2014
195

The mutant-prevention concentration concept and its application to <i>Staphylococcus aureus</i>

Metzler, Kelli Leigh 17 June 2004
<i>Staphylococcus aureus</i> is a ubiquitous organism causing world-wide morbidity and mortality. This species readily develops resistance to antimicrobial agents. Current dosing strategies are based, in part, on minimum inhibitory concentrations (MICs). This susceptibility test fails to detect the presence of first-step resistant mutants often present in large heterogeneous populations of infecting bacteria. Dosing strategies based on MIC results may, in fact, allow for the selective proliferation of resistant subpopulations. The mutant-prevention concentration (MPC) is the drug concentration at which all first-step resistant mutants will be eradicated along with the susceptible cells. Determination of the mutant-selection window (MSW) is possible using MIC and MPC data. When considered together with achievable drug concentrations in human bodily sites, the MSW helps determine which antimicrobials are likely to select for resistance. MIC and MPC testing on clinical isolates of methicillin-susceptible (MSSA) and -resistant (MRSA) S. aureus was performed. Characterization via the polymerase chain reaction, sequencing, and electron microscopy (EM) was done on selected organisms recovered from MPC studies (MPC-recovered). MIC and MPC testing was performed on organisms isolated sequentially from patients with recurring S. aureus infections. Pulsed field gel electrophoresis was performed on these sequential isolates. Based on the MIC and the MPC values, the most potent agents for systemic MSSA and MRSA infections are gemifloxacin and vancomycin, respectively. Re-testing MPC-recovered populations by the MIC showed increased MIC results compared to the parent populations. Macrolide-resistance genes were discovered in S. aureus MPC-recovered populations; in contrast, parental isolates lacked these resistance determinants. EM revealed an increase in cell wall thickness of a vancomycin MPC-recovered population compared to its parental population. Moxifloxacin and vancomycin had the lowest and narrowest MSWs for systemic MSSA and MRSA infections, respectively, compared to the other agents tested. Sequential isolates showed no change in MIC and MPC values. The data presented provides evidence for the application of the MPC test to S. aureus organisms. The MPC data is significant when determining appropriate dosing strategies aimed at preventing resistance.
196

Aplicación de fluoroquinolonas en Medicina Veterinaria: criterios farmacocinéticos y farmacocinéticos/farmacodinámicos (PK/PD

Marín Carrillo, Pedro 03 April 2008 (has links)
La tesis doctoral esta compuesta por 10 artículos, con sus correspondientes 10 resúmenes. En todos los casos que fue posible, se realizó un estudio cruzado y el método de determinación de todas las quinolonas fue cromatografía liquida de alta resolución (HPLC) con un detector de fluorescencia:1. El objetivo fue estudiar la farmacocinética de difloxacino (5 mg/kg) en el caballo (n=6). Difloxacino puede ser efectivo para el tratamiento de infecciones por bacterias sensibles en caballos.2. El objetivo fue estudiar la farmacocinética de danofloxacino en el caballo (n=6), a dosis de 1.25 mg/kg. Danofloxacino en caballos puede ser efectivo para el tratamiento de infecciones por bacterias sensibles.3. La farmacocinética de moxifloxacino en el conejo (n=6) fue evaluada. Moxifloxacino puede ser efectivo en conejos.4. El comportamiento farmacocinético de ibafloxacino (15 mg/kg) fue estudiado en cabras lactantes. La penetración de ibafloxacino desde la sangre a la leche fue pobre. 5. La farmacocinética de difloxacino fue estudiada en cabras lactantes (n=6), a dosis de 5 mg/kg. La penetración de difloxacino desde el plasma a la leche fue amplia y rápida. 6. La farmacocinética/farmacodinámica de danofloxacino fue estudiada en conejos (n=6), a dosis de 6 mg/kg. No se recomienda el uso de danofloxacino en el conejo, contra las cepas de Staphylococcus aureus testadas en este estudio, por el riesgo de aparición de resistencias. 7. Se ha desarrollado un método de cromatografía liquida de alta resolución con detector de fluorescencia simple, rápido y sensible para la determinación de ibafloxacino en plasma de conejo. 8. La farmacocinética de difloxacino fue estudiada en ovejas (n=6), a dosis de 5 mg/kg. Difloxacino puede ser efectivo en las ovejas.9. La farmacocinética de orbifloxacino fue estudiada en cabras lactantes (n=6), a dosis de 2.5 mg/kg. La penetración de orbifloxacino en la leche fue rápida, alcanzando altas concentraciones. 10. La farmacocinética/farmacodinámica de orbifloxacino fue estudiada en conejos (n=6), a dosis de 5 mg/kg. No se recomienda el uso de orbifloxacino,contra las cepas de Staphylococcus aureus testadas en este estudio, por el riesgo de aparición de resistencias. / The present PhD work is composed of 10 manuscripts and 10 summaries: 1. The pharmacokinetics of difloxacin (5 mg/kg) were determined in healthy horses (n=6). Difloxacin in horses indicate that it is likely to be effective for treating sensitive equine bacterial infections.2. The pharmacokinetics of danofloxacin (1.25 mg/kg) were determined in healthy horses (n=6). Danofloxacin in horses indicate that it is likely to be effective for treating sensitive equine bacterial infections.3. The pharmacokinetics (PK) of moxifloxacin in healthy white New Zealand rabbits was studied. The favourable PK parameters indicate that it is likely to be effective in rabbits.4. The pharmacokinetic behavior of ibafloxacin was studied (15 mg/kg) to 6 healthy lactating goats. Ibafloxacin penetration from the blood to the milk was poor. 5. The single-dose disposition kinetics of difloxacin (5 mg/kg) were determined in clinically normal lactating goats (n = 6). Difloxacin penetration from the blood into the milk was extensive and rapid.6. The pharmacokinetics of danofloxacin (6 mg/kg) was studied in healthy rabbits. In consideration of the low AUC/MIC indices obtained, its use cannot be recommended given the risk for selection of first mutant subpopulations.7. A simple, rapid, and sensitive high-performance liquid chromatographic method is developed for the determination of ibafloxacin in rabbit plasma..8. The disposition kinetics of difloxacin, a fluoroquinolone antibiotic, were determined in sheep at a single dose of 5mg/kg. Difloxacin is likely to be effective in sheep.9. The single-dose disposition kinetics of orbifloxacin (2.5 mg/kg) were determined in clinically normal lactating goats (n = 6). Orbifloxacin penetration from the blood into the milk was rapid and showed high levels of concentrations in milk secretion. 10. The single-dose disposition kinetics of orbifloxacin (5 mg/kg) were determined in clinically normal rabbits (n=6). Its use against the S. aureus strains assayed in this study cannot be recommended given the risk of selection of resistant populations.
197

Adaptation of dosing regimen of chemotherapies based on pharmacodynamic models

Paule, Inès 29 September 2011 (has links) (PDF)
There is high variability in response to cancer chemotherapies among patients. Its sources are diverse: genetic, physiologic, comorbidities, concomitant medications, environment, compliance, etc. As the therapeutic window of anticancer drugs is usually narrow, such variability may have serious consequences: severe (even life-threatening) toxicities or lack of therapeutic effect. Therefore, various approaches to individually tailor treatments and dosing regimens have been developed: a priori (based on genetic information, body size, drug elimination functions, etc.) and a posteriori (that is using information of measurements of drug exposure and/or effects). Mixed-effects modelling of pharmacokinetics and pharmacodynamics (PK-PD), combined with Bayesian maximum a posteriori probability estimation of individual effects, is the method of choice for a posteriori adjustments of dosing regimens. In this thesis, a novel approach to adjust the doses on the basis of predictions, given by a model for ordered categorical observations of toxicity, was developed and investigated by computer simulations. More technical aspects concerning the estimation of individual parameters were analysed to determine the factors of good performance of the method. These works were based on the example of capecitabine-induced hand-and-foot syndrome in the treatment of colorectal cancer. Moreover, a review of pharmacodynamic models for discrete data (categorical, count, time-to-event) was performed. Finally, PK-PD analyses of hydroxyurea in the treatment of sickle cell anemia were performed and used to compare different dosing regimens and determine the optimal measures for monitoring the treatment
198

The mutant-prevention concentration concept and its application to <i>Staphylococcus aureus</i>

Metzler, Kelli Leigh 17 June 2004 (has links)
<i>Staphylococcus aureus</i> is a ubiquitous organism causing world-wide morbidity and mortality. This species readily develops resistance to antimicrobial agents. Current dosing strategies are based, in part, on minimum inhibitory concentrations (MICs). This susceptibility test fails to detect the presence of first-step resistant mutants often present in large heterogeneous populations of infecting bacteria. Dosing strategies based on MIC results may, in fact, allow for the selective proliferation of resistant subpopulations. The mutant-prevention concentration (MPC) is the drug concentration at which all first-step resistant mutants will be eradicated along with the susceptible cells. Determination of the mutant-selection window (MSW) is possible using MIC and MPC data. When considered together with achievable drug concentrations in human bodily sites, the MSW helps determine which antimicrobials are likely to select for resistance. MIC and MPC testing on clinical isolates of methicillin-susceptible (MSSA) and -resistant (MRSA) S. aureus was performed. Characterization via the polymerase chain reaction, sequencing, and electron microscopy (EM) was done on selected organisms recovered from MPC studies (MPC-recovered). MIC and MPC testing was performed on organisms isolated sequentially from patients with recurring S. aureus infections. Pulsed field gel electrophoresis was performed on these sequential isolates. Based on the MIC and the MPC values, the most potent agents for systemic MSSA and MRSA infections are gemifloxacin and vancomycin, respectively. Re-testing MPC-recovered populations by the MIC showed increased MIC results compared to the parent populations. Macrolide-resistance genes were discovered in S. aureus MPC-recovered populations; in contrast, parental isolates lacked these resistance determinants. EM revealed an increase in cell wall thickness of a vancomycin MPC-recovered population compared to its parental population. Moxifloxacin and vancomycin had the lowest and narrowest MSWs for systemic MSSA and MRSA infections, respectively, compared to the other agents tested. Sequential isolates showed no change in MIC and MPC values. The data presented provides evidence for the application of the MPC test to S. aureus organisms. The MPC data is significant when determining appropriate dosing strategies aimed at preventing resistance.
199

Die Pharmakokinetic von Meropenem bei Patienten mit schweren Infektionen / Pharmacokinetics of meropenem in critically ill patients with severe infections

Hoppe, Sebastian 09 August 2010 (has links)
No description available.
200

L’effet de l’endotoxémie sur les paramètres pharmacocinétiques et pharmacodynamiques de la kétamine et de la xylazine lors d’anesthésie chez le rat Sprague Dawley

Veilleux-Lemieux, Daphnée 01 1900 (has links)
Lorsque l’anesthésie par inhalation ne peut être utilisée chez le rat, la combinaison de kétamine et de xylazine est l’alternative la plus fréquemment utilisée. Les doses administrées peuvent varier selon le protocole expérimental. En présence de fièvre, d’infections ou de processus tumoral accompagné de fièvre, la pharmacocinétique de ces drogues peut être modifiée. Ce projet porte sur l’évaluation des changements physiologiques, hématologiques, biochimiques et pharmacocinétiques chez le rat Sprague Dawley lors d’anesthésie avec le mélange kétamine-xylazine suite à l’administration de trois doses différentes de lipopolysaccharide (LPS). Après l’administration de LPS, une anesthésie à la kétamine-xylazine fut induite chez des rats Sprague Dawley. Des prélèvements sanguins périodiques ainsi que des mesures des paramètres physiologiques furent effectués afin d’évaluer l’effet du LPS sur la pharmacocinétique des deux drogues ainsi que sur les paramètres biochimiques et hématologiques. Les différentes doses de LPS ont causé certaines modifications notamment en produisant une baisse marquée de la saturation en oxygène et de l’albumine sérique, une augmentation de la durée d’anesthésie ainsi que des lésions hépatiques mineures. Les paramètres pharmacocinétiques de la kétamine furent peu altérés par l’administration de LPS tandis qu’une diminution de la clairance et une augmentation de l’aire sous la courbe (AUC) furent observées pour la xylazine dans les groupes ayant reçu les doses moyenne et élevée de LPS. Ces résultats montrent que les doses de xylazine doivent être adaptées en présence de LPS pour permettre une anesthésie de courte durée et des changements physiologiques et biochimiques moindres lorsqu’elle est administrée avec de la kétamine. / When inhalation anesthesia cannot be used in laboratory rats, ketamine-xylazine combination is the most frequent alternate regimen. The administrated doses can vary according to the experimental protocol. During fever episodes, infections or tumoral process, the pharmacokinetics of these drugs can be modified. This project focuses on the evaluation of the physiological, hematological, biochemical and pharmacokinetics changes in Sprague Dawley rats during ketamine-xylazine anesthesia, after administration of three different doses of lipopolysaccharide (LPS). After administration of LPS to Sprague Dawley rats, ketamine-xylazine anesthesia was induced. Periodic blood samplings and monitoring of physiologic parameters were made in order to evaluate the effect of LPS on ketamine-xylazine pharmacokinetics and hematological and biochemical parameters. The different LPS doses caused specific parameter modifications including a marked decrease of oxygen blood saturation and serum albumin, a longer anesthesia duration and minor hepatic lesions. No significant modifications of pharmacokinetics parameters of ketamine were observed. An increase of area under curve (AUC) and a decrease of xylazine clearance were noted in groups who received medium and large doses of LPS. These results show that that xylazine doses need to be adapted in the presence of LPS, to allow a shorter duration anaesthesia and lesser physiological and biochemical changes when administered with ketamine.

Page generated in 0.0485 seconds