• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 222
  • 76
  • 43
  • 19
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 885
  • 89
  • 86
  • 83
  • 80
  • 78
  • 64
  • 63
  • 63
  • 62
  • 56
  • 55
  • 54
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
691

Influence of the environment on the fatigue properties of alumina ultra-thin coatings and silicon and nickel thin films

Baumert, Eva K. 20 September 2013 (has links)
This dissertation presents the investigation of three thin film materials used in microelectromechanical systems (MEMS): alumina, silicon, and nickel. For this purpose, novel experimental techniques to test thin films under MEMS-relevant loading conditions were developed in order to study environmental effects and the underlying fatigue mechanisms of amorphous alumina ultra-thin coatings, mono-crystalline brittle silicon thin films, and poly-crystalline ductile nickel thin films. Knowledge of these mechanisms is necessary to improve the reliability of MEMS, especially of those devices operating in harsh environments. MEMS resonators were used to investigate both the fatigue and time-dependent behavior of alumina, silicon, and nickel. While micro-resonators were used in prior studies to research the fatigue properties of mono- and polycrystalline silicon, this work is the first in (1) using them to investigate fatigue properties of ultra-thin coatings and metallic films and in (2) using micro-resonators to investigate the time-dependent fatigue behavior of silicon films. For fatigue testing, the micro-resonators were subjected to fully-reversed loading at resonance (≈40 kHz for alumina-coated silicon, ≈8 kHz for nickel). Experiments were conducted in air at 30 °C, 50% relative humidity (RH) or 80 °C, 90% RH and testing was carried out over a broad range of applied stresses. The resonance frequency evolution proved to be a metric for the accumulated damage, which could be further quantified using finite element analysis. In addition, scanning and transmission electron microscopy were used to examine the extent of fatigue damage. For testing under static loads, the resonators were subjected to external loading using a micromanipulator and probe-tip. Experiments with atomic-layer-deposited alumina investigated the cohesive and interfacial fatigue properties of alumina coatings of four different thicknesses, ranging from nominally 4.2 nm to 50.0 nm on silicon micro-resonators. Fatigue loading led to both cohesive and interfacial damage, while static loading did not result in any damage. Both the cohesive and interfacial fatigue crack growth rates are approximately one order of magnitude higher at 80 °C, 90% RH than at 30 °C, 50% RH and seem to increase with increasing strain energy release rate. A combination of compressive loading and the silicon sidewall's surface roughness is believed to cause the observed fatigue behavior. Experiments with 10-micrometer-thick deep reactive ion etched silicon micro-resonators investigated two aspects: whether surface oxidation is the critical parameter in silicon thin film fatigue and time-dependent failure in silicon as a potential underlying cause of resonator failures in the low cycle fatigue (LCF, <17 cycles, corresponding to ≈5 min) regime. To confirm whether surface oxidation is the critical parameter in silicon thin film fatigue, the influence of oxygen diffusion barrier alumina coatings on the fatigue behavior was investigated. The coatings led to an increase in fatigue life by at least two orders of magnitude compared to uncoated devices in the harsh environment, which not only confirms reaction layer fatigue (RLF) as governing fatigue mechanism in silicon thin films, but also constitutes a practical solution to significantly increase fatigue lifetimes. Previous LCF data were inconsistent with the RLF model, given that thick surface oxidation is unrealistic for tests lasting only few minutes. Accordingly, time-dependent failure in silicon was investigated as underlying cause and the observation of resonator failures under static loading indeed suggest that time-dependent crack growth may be responsible for LCF failures. Experiments with metallic micro-resonators investigated the fatigue crack initiation in 20-micrometer-thick electro-deposited nickel under MEMS-relevant conditions, such as extreme stress gradients resulting in non-propagating cracks, fully-reversed loading (over a large range of stress amplitudes), exposure to mild and harsh environments, and accumulation of billions of cycles. Under these circumstances, extrusions form locally at the notch root (within few million cycles at high stress amplitudes). Very thick local oxides (only at the location of the extrusions) of up to 1100 nm were observed in the harsh environment, with thinner oxides (up to 700 nm) in the mild environment. Micro-cracks form in the oxide but do not propagate given the extreme stress gradients. Finite element analysis confirmed that oxidation and micro-cracking lead to changes in the resonance frequency, which are consistent with the experimental results. Accumulation of cyclic plasticity appears to also lead to a decrease in resonance frequency which scales with applied strain.
692

Measuring and understanding grain boundary properties of engineering ceramics

Norton, Andrew David January 2013 (has links)
This thesis aims to measure the mechanical properties of ceramics on the microscale using microcantilever beams. Focussed Ion Beam milled triangular cross-sectional beams (approximately 3 x 5 x 20µm) were fractured using a nanoindenter to measure the Young’s modulus, fracture strength, and fracture toughness. By developing the technique with a sapphire bicrystal, it was found that the mechanical properties could be successfully ascertained if correction factors were used. Experiments and theoretical work showed that sapphire and polycrystalline alumina beams undergo moisture assisted sub-critical crack growth when tested in air. Whilst corrections for the Young’s modulus have been previously reported, this is the first reported attempt to correct for the notch tip residual stress and the first to consider sub-critical crack growth. Once these factors were characterised using the sapphire bicrystal, the technique was applied to a range of different ceramics, such as polycrystalline α-alumina and silicon nitride. These are the first reported direct measurements the grain boundary toughness of these ceramics using microcantilever beams. The grain boundary toughness was correlated with the macroscopic fracture properties and the characteristics of the ceramic (grain boundary composition, impurities, and fracture mode). Two grades of α-alumina were used and the macro- and micro-scale properties extensively compared. The damage evolution during uniaxial compression of alumina was investigated in depth, and compared to a previous reported microcrack evolution model using the measured grain boundary toughness. Investigation of whether deformation twins formed during loading was undertaken and the phenomenon was shown to not occur.
693

Interactions of biomass derived oxygenates with heterogeneous catalysts in aqueous and vacuum environments

Copeland, John Robert 13 January 2014 (has links)
Biomass is one of the most promising replacements for fossil fuels as a feedstock for chemical and transportation fuel production. The combination of low vapor pressure and high polarity of most biomass derived molecules makes water the ideal solvent for biomass upgrading reaction schemes. Metal oxide and metal oxide supported catalysts are heavily used in oil refining and petrochemical production, and are capable of upgrading biomass molecules as well. However, the surface chemistries that dictate the behavior of aqueous phase biomass upgrading reactions over metal oxide catalysts are not nearly as well understood as in the case of gas phase hydrocarbon refining systems. This dissertation aims to investigate the surface chemistries of biomass derived oxygenate molecules on metal oxide and metal oxide supported metal catalysts. There are three main objectives in this dissertation: to understand how two and three carbon polyols interact with metal oxide surfaces, to elucidate the role of various surface sites on polyol-metal oxide interactions, and to discover the surface species of kinetic importance in aqueous phase reforming reactions of biomass molecules. Transmission infrared spectroscopy and density functional theory modeling were the major techniques used to demonstrate that polyols with alcohol groups on the first and third carbons, 1,3-propanediol and glycerol, form a multidentate surface species with a bridging alkoxide bond and an acid/base interaction through their two primary alcohol groups with Lewis acid sites of g-Al₂O₃. These interactions occur in the presence of bulk water. Polyols with alcohol groups only on the first and second carbons, ethylene glycol and 1,2-propanediol, only formed alkoxy bonds with the g-Al₂O₃ surface when bulk water was not coadsorbed, and these bonds were removed by re-adsorbing water. Glycerol also forms the same surface species on other metal oxides with strong Lewis acidic character: TiO₂ anatase, ZrO₂, and CeO₂. Glycerol only forms hydrogen bonds with MgO, which lacks strongly Lewis acidic sites. Basic surface hydroxyls and surface oxygen atoms of the metal oxides only played a minor role in interacting with the adsorbed glycerol. In-situ attenuated total reflectance infrared spectroscopy demonstrated that the aqueous phase reforming of glycerol over a 5 wt% Pt on g-Al₂O₃ catalyst is hindered by residual platinum bound hydrogen or oxygen atoms from commonly utilized catalyst reduction or cleaning procedures, respectively. A pretreatment consisting of multiple iterations of dissolved oxygen, dissolved hydrogen, and dissolved helium in water flow periods provides the cleanest Pt surface for monitoring carbon monoxide formation dynamics, and allows for observing the rate limiting step of the aqueous phase reforming reactions water-gas shift removal of Pt bound carbon monoxide. The bridging bound carbon monoxide is preferentially removed over the linearly bound species via water gas shift reactions even at room temperature.
694

Membranes d'alumine nano-poreuses pour l'élaboration de nanostructures / Nanoporous alumina membranes for the elaboration of nanostructures

Macé, Magali 12 November 2010 (has links)
Les membranes d'alumine nano-poreuses suscitent depuis quelques années un grand intérêt dans la synthèse de nano-objets. Ces membranes présentent des pores très verticaux naturellement organisés en un réseau hexagonal (structure en nid d'abeilles). Le diamètre des pores peut varier entre 20 et 200nm espacés de 60 à 540nm et l'épaisseur de la membrane peut varier de 100nm à plusieurs centaines de µm. Durant ces travaux de thèse, deux approches ont été envisagées pour synthétiser des nano-structures. La première consiste à utiliser ces membranes comme nano-réservoirs. La couche barrière formée au fond de la membrane dont l'épaisseur est environ égale au diamètre des pores est diminuée à 10nm par voie chimique. Puis des dépôts de divers matériaux (Au, Co, Si) ont été réalisés dans des membranes avec des pores de 180nm et 40nm préalablement dégazées. Ces objets 3D ont été fabriqués sous ultra-vide (10-10 mbar), concfinés à l'intérieur des nano-réservoirs, transparents aux électrons. Les études en TEM permettent d'avoir accès à la morphologie des nanoparticules, qui se révèlent être cristallines, selon plusieurs directions cristallographiques. En vue plane, perpendiculairement à l'interface, pour ceux déposés au fond du nano-réservoir et en vue transverse pour ceux déposés sur les parois. Il a par ailleurs été possible de réaliser des études de recuits in-situ en température (RT à 1000° C) dansle TEM pour des particules d'or. La seconde approche repose sur l'utilisation des membranes ouvertes comme masque pour l'évaporation. Cette technique permet de dupliquer le motif de la membrane sur le substrat préalablement nettoyé pour former un réseau de nanoparticules correspondant au matériau déposé. Nous avons réalisé de manière reproductible, sous ultravide,des réseaux de plots d'or à l'aide de membranes dont le diamètre des pores est de 180 nm / The nanoporous alumina membrane rise in recent years a great interest in the synthesis of nanoobjects. These membranes have pores naturally very vertical organized in a hexagonal lattice(honeycomb structure). The pore diameter may vary between 20 and 200nm spaced 60 to 540nmand the thickness of the membrane can vary from 100nm several hundred microns. During this thesis work, two approaches have been explored to synthesize nano-structures. The first is touse these membranes as nano-tanks. The barrier layer formed at the bottom of the membrane whose thickness is about equal to the diameter of pores is reduced to 10nm by chemical etching. Then deposits from materials (Au, Co, Si) were performed in membranes with pores of 180nmand 40nm previously degassed. These 3D objects have been produced under ultra-high vacuum(10-10 mbar), confined within nano-tanks, transparent to electrons. TEM studies allow accessto the morphology of nanoparticles, which are proving to be crystallin, according to several crystallographic directions. In plane view perpendicular to the interface for those deposited atthe bottom of the nano-tank and cross-sectional view for those deposited on the walls. It has also been possible to perform studies of in-situ annealing (RT to 1000° C) in TEM of Au particles. The second approach relies on the use of membranes opened as an evaporation mask. This technique allows to duplicate the pattern of the membrane to the substrate previously cleaned, to form a network of nanoparticles corresponding to the material deposited. We have achieved reproducible, gold dot arrays, under UHV conditions using membranes with a pore size of 180 nm.
695

Friction and lubrication behaviour of metal-on-metal and ZTA ceramic-on-CFR PEEK hip prostheses : friction and lubrication behaviour of metal-on-metal hip resurfacing and ZTA ceramic heads versus CFR PEEK cups with various diameters and clearances using serum-based lubricants with various viscosities

Said, Assma Musbah January 2012 (has links)
The natural hip joint in healthy people has a very low friction with very little (or no) wear. It works as a dynamically loaded bearing and is subjected to about 1-2 million cycles of loading per year. The applied load is the body weight which is tripled when walking and even higher during other activities such as running and jumping. Unfortunately these joints are not always healthy due to various causes such as fractures or disease leading to severe pain which necessitates joint replacement. Currently, the orthopaedic industries are working towards developing an ideal artificial hip joint with low wear, low friction, good lubrication, better fixation/stability and biocompatibility. Many different designs and materials have been investigated with some promising new implants which can be used depending on patients' individual need (large or small joint), activity and age. In this work, two types of artificial hip joints were tested for friction and lubrication studies: Metal-on-Metal (MoM) Biomet hip resurfacing ReCaps with large diameters (>35-60 mm) and different diametral clearances (~ 60-350 µm), and Zirconia Toughened Alumina (ZTA) heads against carbon-fibre-reinforced poly-ether-ether ketone (CFR PEEK) cups with different diameters (>35-60 mm) and diametral clearances (60-1860 µm). Seven serum-based lubricants with different viscosities were used with and without carboxy methyl cellulose (CMC) additions as gelling agent to increase viscosity depending on the CMC content. The maximum load applied was 2000 N for the stance phase with a minimum load of 100 N for the swing phase. A Pro-Sim friction hip simulator was used to investigate the frictional torque generated between the articulating surfaces so as the friction factor can be calculated. Stribeck analysis was then employed to assess the mode of lubrication. For the metal-on-metal hip resurfacing joints, the friction factors were in the range 0.03-0.151 and those for the ZTA ceramic heads versus CFR PEEK cups were in the range 0.006-0.32. Stribeck analyses showed mainly mixed lubrication for both MoM and ZTA ceramic-on-CFR PEEK joints. The experimental results were in agreement with most of the theoretical calculations suggesting mixed lubricating regimes at low viscosities and moving on to fluid film lubrication at higher viscosities. Joints with larger-diameters, lower clearances and lower surface roughness exhibited a higher lambda ratio suggesting improved lubrication. Viscosity flow curves for the serum-based lubricants having viscosity ≤ 0.00524 Pas showed non-linear relationship between viscosity and shear rate indicating non-Newtonian flow with pseudoplastic or shear-thinning characteristic, i.e. viscosity decreased as shear rate increased up to shear rates of ~ 1000 s⁻¹. However, at shear rates greater than 1000 s⁻¹ Newtonian flow became dominant with almost constant viscosity, i.e. a linear relationship between shear stress and shear rate. On the other hand, viscosity flow curves for the lubricants with viscosity ≥ 0.0128 Pas showed non-Newtonian behaviour up to a shear rate of 3000 s⁻¹ with shear-thinning characteristic.
696

Friction and lubrication behaviour of hip resurfacing metal-on-metal and ZTA ceramic on CFR peek implants with various diameters and clearances : friction and lubrication behaviour of hip resurfacing Co-Cr-Mo and zirconia toughened alumina ceramic heads against carbon fibre reinforced poly-ether-ether-ketone cups with various diameters and clearances have been investigated using serum-based lubricants

Ehmaida, Mutyaa M. January 2012 (has links)
Total hip joint prostheses made of CoCrMo heads versus ultra high molecular weight polyethylene (UHMWPE) cups have a limited lifetime, mainly due to the wear of the UHMWPE cups as a result of high friction between the articulating surfaces leading to osteolysis and implant loosening with revision surgery becoming inevitable in more active patients. Tribology plays an important role in developing the design, minimizing wear and reducing friction of hip joint prostheses in order to improve their long-term performance, with good lubricating properties. Metal-on-metal hip resurfacing prostheses have shown significantly lower wear rates compared with conventional metal-on-polyethylene implants and thus osteolysis is potentially reduced leading to increased lifetime of the prosthesis. Nevertheless, excessive wear of metal-on-metal joints leads to metal ion release, causing pseudo-tumours and osteolysis. An alternative approach to such bearings is the use of newly developed carbon fiber-reinforced poly-ether-ether-ketone (CFR PEEK) acetabular cups articulating against ceramic femoral heads due to their better wear resistance compared to UHMWPE. In this study, therefore, friction and lubrication properties of large diameter, as cast, Co-Cr-Mo metal-on-metal hip resurfacing implants with various diameters and clearances have been investigated and compared to those of the newly developed zirconia toughened alumina (ZTA) ceramic femoral heads articulating against carbon fiber reinforced poly-ether-ether-ketone (CFR PEEK) acetabular cups with different diameters and clearances. Friction hip simulator was used to measure frictional torque and then friction factors were calculated along with Sommerfeld numbers leading to Stribeck analysis and hence the lubricating mode was also investigated. This involved using lubricants based on pure bovine serum (BS) and diluted bovine serum (25 vol. %BS+75 vol. %distilled water) with and without carboxymethyl cellulose (CMC) (as gelling agent). Standard Rheometer was used to measure lubricant viscosity ranged from 0.0014 to 0.236 Pas at a shear rate of 3000 . Pure bovine serum, diluted bovine serum without CMC and with CMC (25BS+75DW+0.5gCMC and +1gCMC) showed pseudoplastic flow behaviour up to shear rate of ~139 s⁻¹ above which a Newtonian flow with significant increase in shear stress was observed. The viscosity flow curves for the 25BS+75DW+2gCMC, +3.5gCMC and +5gCMC showed only shear thinning up to a shear rate of 3000 . The shear rate application modified the flow behaviour of bovine serum from a pseudoplastic to a Newtonian flow depending on its purity and CMC content. This will cause a different frictional behaviour depending on joint diameter and clearance, as seen in this work. The experimental data were compared with theoretical iv predictions of the lubricating regimes by calculating theoretical film thickness and lambda ratio. The metal-on-metal Biomet ReCaps showed similar trends of Stribeck curves, i.e. friction factors decreased from ~0.12 to ~0.05 as Sommerfeld numbers increased in the range of viscosities ~0.001-0.04Pas indicating mixed lubrication regimes above which the friction factor increased to ~0.13 at a viscosity of 0.236Pas. The Stribeck analyses suggested mixed lubrication as the dominant mode with the lowest friction factor in the range ~0.09 - ~0.05 at the physiological viscosities of ~0.01 to ~0.04 Pas and that such joints can be used for more active patients as compared to the conventional total hip replacement joints with 28mm diameter. The Stribeck curves for all ZTA ceramic-on-CFR PEEK components illustrated a similar trend with BS fluids showing higher friction factors (in the range 0.22-0.13) than the diluted BS+CMC fluids (in the range 0.24-0.05). The friction tests revealed boundary-mixed lubrication regimes for the ZTA ceramic-on-CFR-PEEK joints. The results, so far, are promising and suggest clearly that the newly developed ZTA ceramic femoral heads articulating against CFR PEEK cups have similar friction and lubrication behaviour at optimum clearances to those of currently used metal-onmetal hip resurfacing implants at the range of viscosities 0.00612 to 0.155Pas. These results clearly suggest that the ZTA ceramic-on-CFR-PEEK joints showed low friction at the physiological viscosities of ~0.01Pas in the range ~0.1-0.05, suggesting that these novel joints may be used as an alternative material choice for the reduction of osteolysis. The result of this investigation has suggested that the optimum clearance for the 52mm diameter MOM Biomet ReCaps could be ~170μm. However, 48 and 54mm joints showed lower friction due to clearances to be >200μm. For the 52mm ZTA ceramic-on-CFR-PEEK joints the optimum clearance seems to be ≥ 630μm radial clearance. These results suggested that increased clearance bearings have the potential to generate low friction and hence no risk of micro- or even macro-motion for the ceramic-on-CFR-PEEK joints. This study found no correlation between theoretical predictions and experimental data for all metal-onmetal and ZTA ceramic-on-CFR PEEK bearings at the physiological viscosity (0.0127Pas). However, at lubricant viscosity of 0.00157Pas, the theoretical prediction of lubrication regime correlated well with the experimental data, both illustrating boundary lubrication. As expected, a decrease in viscosity resulted decrease in the film thickness.
697

Élaboration par solidification dirigée et comportement mécanique de céramiques eutectiques à base d’oxydes réfractaires : rôle de la microstructure sur la fissuration et la déformation plastique à haute température

Perrière, Loïc 26 November 2008 (has links)
Dans le contexte général lié aux économies d’énergie, l’amélioration sensible du rendement des turbines à gaz (aéronautiques ou terrestres), nécessitera d’augmenter notablement la température des gaz de combustion. Cela implique l’emploi de matériaux stables au-delà de 1 500°C. Les céramiques eutectiques préparées par solidification dirigée, à partir des systèmes Al2O3 - Ln2O3 (où Ln représente un élément lanthanide ou l’yttrium) sont une solution envisageable. En effet, leur microstructure, constituée d’un réseau interpénétré 3D de deux phases monocristallines, et exempte de pores, de colonies et de joints de grains, confère à ces systèmes eutectiques des propriétés mécaniques d’un bon niveau, et quasi-constantes jusqu’à des températures proches de leur température eutectique (> 1 700°C). Nos travaux ont consisté à élaborer plusieurs systèmes eutectiques binaires et ternaires, par ajout d’une phase ZrO2 renforçante. Les six systèmes présentant les microstructures les plus prometteuses (3 binaires : Al2O3 - Y3Al5O12, Al2O3 - Er3Al5O12, Al2O3 - GdAlO3, et 3 ternaires : Al2O3 - Y3Al5O12 - ZrO2, Al2O3 - Er3Al5O12 - ZrO2, Al2O3 - GdAlO3 - ZrO2) ont été retenus pour étudier certaines de leurs propriétés mécaniques. Plusieurs modes de fissuration, allant dans le sens de l’augmentation de ténacité détectée dans ces systèmes, ont été décelés après des essais de flexion biaxiale. Ces modes de fissuration ont été corrélés aux caractéristiques microstructurales et à la distribution des contraintes résiduelles, déterminées par le calcul et mesurées par une méthode piézo-spectroscopique. Enfin, l’étude du comportement en fluage à haute température a permis de mettre en évidence une évolution des mécanismes de déformation en fonction des conditions de sollicitation. L’étude MET post mortem a également souligné l’influence marquée du caractère interconnecté de la microstructure sur le comportement en fluage. / In the general context of energy savings at a global scale, the improvement of the thermal efficiency of both terrestrial and aeronautical gas turbines will require to increase the turbine inlet gas temperature. The development of new materials, stable up to 1 500°C, is thus necessary. In this context, Directionally Solidified Eutectic Ceramics (DSEC), prepared from Al2O3 and Ln2O3-based systems, could be a potential solution. Their microstructure consists of two single-crystal phases continuously entangled in a threedimensional interpenetrating network without grain boundaries, pores or colonies. The outstanding stability of these microstructures gives rise to a high strength and creep resistance at high temperature. Our research consisted first in obtaining, by directional solidification, several eutectic systems, either binary or ternary (with addition of a toughening third ZrO2 phase). The six most promising DSEC (3 binary systems: Al2O3 - Y3Al5O12, Al2O3 - Er3Al5O12, Al2O3 - GdAlO3, and 3 ternary systems: Al2O3 - Y3Al5O12 - ZrO2, Al2O3 - Er3Al5O12 - ZrO2, Al2O3 - GdAlO3 - ZrO2) have then been selected to study some of their mechanical properties. Several crack propagation patterns have been detected after biaxial flexure testing, and partially explain the toughening which has been proven for DSEC. Attention has been paid to the possibility of crack deflection in the various phases and in the phase boundaries, a phenomenon which may markedly improve the toughness of these eutectic ceramics. These observations have been correlated to internal stress calculations and piezo-spectroscopic measurements. Finally, the study of the creep behavior showed that the deformation mechanisms evolve with the macroscopic solicitation (temperature and stress). microstructure. Moreover, post mortem TEM observations exhibited that creep mechanisms are strongly dependant on the entangled microstructure.
698

Suivi par methode optique du frittage micro-ondes d'oxydes ceramiques. / In-situ monitoring of ceramic microwave sintering using optical method.

Zymelka, Daniel 13 January 2012 (has links)
Le frittage micro-ondes est connu pour être une technique de frittage prometteuse. En effet, ce procédé présente comme avantages une réduction de la durée des traitements thermiques et un gain énergétique important par rapport aux procédés conventionnels. D'année en année, le frittage dans un environnement micro-ondes est étudié par un nombre croissant de chercheurs. Cependant, les raisons de l’effet bénéfique de ce type de frittage ne sont pas clairement identifiées.Dans ce contexte, l’objectif de ce travail a été de vérifier l’influence d’un champ électromagnétique à la fréquence de 2,45 GHz sur la densification de matériaux céramiques. Cet objectif passe donc par une étude comparative du frittage dans une enceinte micro-ondes et dans un four conventionnel. Cependant, la présence du champ électromagnétique dans un four micro-ondes ne permet pas l’utilisation des méthodes conventionnelles pour suivre le frittage. Ainsi, pour comparer les résultats, un dispositif expérimental original contenant un dilatomètre sans contact de haute résolution a été spécifiquement développé. Ce dispositif, permet aussi un suivi de la distribution de température à la surface de la pièce.Pour des cycles thermiques identiques, obtenus en frittage conventionnel et par micro-ondes, l’évolution de la densification de matériaux aux propriétés différentes a été comparée. Ces matériaux sont : l’alumine pure et dopée par 800ppm d’oxyde de magnésium, l’oxyde de zinc et l’hydroxyapatite silicatée. Pour chacun de ces matériaux, le couplage avec les micro-ondes et la répartition du chauffage à la surface de l’échantillon sont aussi discutés. Un effet bénéfique des micro-ondes sur l’évolution de la densification a été mis en évidence pour l’alumine avec ajout de MgO et de manière plus prononcée pour l’oxyde de zinc. / Microwave sintering is known to be a promising sintering technology. Indeed, this method has advantages such as reducing the duration of heat treatment and a significant energy saving compared with conventional processes. Year after year, sintering in a microwave environment is studied by a growing number of researchers. However, the reasons for the beneficial effect of this type of sintering are not clearly identified.In this context, the objective of this work was to verify the influence of an electromagnetic field at a frequency of 2.45 GHz on the densification of ceramic materials. This objective therefore involves a comparative study of sintering in a microwave chamber and in a conventional oven. However, the presence of electromagnetic field in a microwave oven does not allow the use of conventional methods to monitor the sintering. Thus, to compare the results, an experimental system containing a high resolution contactless dilatometer has been specifically developed. This system also allows monitoring of the temperature distribution on the sample surface.For identical thermal cycles, obtained by conventional and microwave sintering, the densification evolution of materials with different properties was compared. These materials are: pure alumina and doped with 800ppm magnesium oxide, zinc oxide and silicon-substituted hydroxyapatite. For each material, the coupling with the microwaves and the temperature distribution on the surface sample are also discussed. A beneficial effect of microwaves on the evolution of densification has been identified for alumina with addition of MgO and more pronounced for zinc oxide.
699

Template-Assisted Fabrication of Ferromagnetic Nanomaterials

Tripathy, Jagnyaseni 18 December 2014 (has links)
Abstract Template assisted deposition was used to produce various nanomaterials including simple nanowires, nanorods, multi-segmented metal nanowires, core-shell nanowires, alloy and polymer wires and tubes. Anodized aluminum oxide (AAO) membranes were used as templates for the growth of the various structures using an electrochemical deposition method and also by wetting the porous templates. In the electrochemical deposition method, the pore size of the templates affects the rate of synthesis and the structures of the nanomaterials while in the wetting method, the viscosity and reaction time in the polymer solution influence the structures of the nanomaterials. A conventional two-step anodization procedure was used to synthesize thick AAO templates with porous hexagonal channels at a constant applied voltage and temperature. A maximum thickness of over 180 µm oxide layer could be fabricated using mild anodization at 60 V and 80 V. Compared to conventional mild anodization, these conditions facilitated faster growth of oxide layers with regular pore arrangement. Polyethylene glycol (PEG) containing ferromagnetic nanowires were synthesized using template assisted electrochemical deposition method. During the synthesis, simultaneous deposition of polymer and metal ions resulted nanowires coated with a uniform layer of PEG without interfering with the structure and magnetic properties of the nanowires. PEG-coated Ni nanowires were embedded in polyethylene diacrylate (PEGDA) matrix after the removal of the AAO templates. Comparison of results with and without a magnetic field during embedding showed that the presence of magnetic field supported embedding of nanowire arrays in polymer. Influence of using AAO templates with several pore diameters for the synthesis of bimetallic nanowires were studied by growing Ni-Fe and Ni-Co bi-metallic nanowires. At a constant applied current by using templates with a pore diameters of 60 nm alloy formed while with a pore diameter of 130 nm core-shell nanowires formed. Polyvinylidene fluoride (PVDF) films and nanotubes were synthesized using a solution recrystallization method that favored the formation of piezoelectric β phase thin films. Variation in the concentration of polymer in the mixture solution allowed synthesis of different types of structures such as PVDF composites, nanorods and nanocrystals with tunable morphologies. Keywords: One-dimensional structures, electrodeposition, porous alumina, ferromagnetic nanostructures, magnetic core-shell nanowires, alloys, polymer composite, stimuli-active, PEGDA, azobenzene, and PVDF.
700

Élaboration par projection plasma d'un revêtement bicouche d'alumine réfléchissant et diffusant. Contribution à la compréhension des phénomènes interaction rayonnement/matière / Manufacturing of a reflecting and scattering bilayer in alumina by plasma spraying process. Contribution to the understanding of interaction radiation/matter

Marthe, Jimmy 20 December 2013 (has links)
Ces travaux de thèse sont consacrés à l'élaboration de revêtement réfléchissant et diffusant par projection plasma d'arc soufflé. Par la sélection des paramètres opératoires et le contrôle de la microstructure des revêtements élaborés, la première partie de cette étude présente la mise en forme d'un revêtement bicouche (micro/nano-structuré) d'alumine possédant une réflectance supérieure à 90% sur la gamme UV-Visible. Le transfert nécessaire à la démonstration pour démontrer la faisabilité d'élaboration de pièces de plus grandes dimensions (0.25 m2) a été entrepris. Dans une seconde partie et à partir de l'exploration de la microstructure des revêtements et de leur physicochimie, l'amélioration de la réflectance dans le proche UV par la couche nanostructurée est explicitée d'une part par la nature de la phase cristallographique moins absorbante et d'autre part par la présence en nombre de pores de faibles dimensions. De plus, la caractérisation des propriétés radiatives des revêtements par inversion de l'Equation du Transfert Radiatif a permis d'obtenir des éléments de compréhension des phénomènes d'interaction rayonnement/matière. Enfin, une dernière partie a pour objectif de mettre en place les différents éléments nécessaires à la prédiction des propriétés optiques de revêtements mis en forme par projection plasma. Un modèle tridimensionnel a été proposé pour représenter numériquement la structure de chacune des couches micro- et nanostructurée à partir des analyses microstructurales. Le code de résolution des équations de Maxwell par méthode FDTD (Finite Difference Time Domain) a été validé et de premières simulations ont été réalisées / This study deals with the manufacturing of reflecting and scattering coatings by plasma spraying process. By the selection of operating parameters and the control of the coatings microstructure, the first part of this work presents the elaboration of a micro/nanostructured bilayer material in alumina with a reflectance up to 90 % in the near UV-Visible range of wavelength. The feasibility of larger pieces (0.25m2) is demonstrated and the different characterizations for inserting the material in the Laser MegaJoule are performed. In a second part, from characterizations of the microstructure (by SEM, Hg Porosimetry, USAXS) and the chemical composition (DRX, X fluorescence), the improvement of the reflectance in the near-UV thanks to the nanostructured layer is explained, on the one hand, by the less absorbing crystallographic phase and, on the other hand, by the smaller and numerous pores. Moreover, the characterization of the radiation properties by the Radiation Transfer Equation inversion brings new elements for understanding the phenomena during radiation/porous media interaction and to determine the spatial repartition of the scattering radiation. The aim of the last part is to set up the different tools which are necessary to compute simulations of plasma-sprayed coatings optical behavior. From the microstructure analysis, a tridimensional numerical representation of each layer is suggested. The resolution of Maxwell equations is performed by FDTD (Finite Difference Time Domain) method. The model is validated and some first simulations are realized

Page generated in 0.0504 seconds