• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 97
  • 45
  • 41
  • 21
  • 1
  • Tagged with
  • 408
  • 266
  • 252
  • 204
  • 204
  • 204
  • 82
  • 68
  • 44
  • 37
  • 34
  • 32
  • 32
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Construction of Functionalized Heterocycles by Palladium-catalyzed Domino Reactions with Strained Alkenes

Thansandote, Praew Petcharat 23 February 2011 (has links)
The Lautens group has a long-standing interest in developing novel approaches to heterocycle synthesis. One such approach is a Pd-catalyzed, norbornene-mediated domino reaction which can form up to three carbon-carbon bonds in one synthetic sequence. The key additive is norbornene which acts similar to a catalyst by assembling the scaffold to enable the formation of a carbon-carbon bond, though is not incorporated into the final compound. The reaction involves C-H bond functionalization as a key step and a Pd(IV) complex as a key intermediate. The goal of the current thesis was to introduce reactive heteroatoms to this domino reaction for the first time, with particular focus on the introduction of nitrogen. Methodologies were developed to present novel syntheses of heterocycles with high pharmaceutical interest. Our initial study focused on the selective functionalization of thiophenes to give multi-substituted sulfur compounds. To synthesize pharmaceutically important nitrogen heterocycles, we demonstrated for the first time that an amination reaction was compatible with the domino reaction. This development led to novel approaches to synthesize substituted indolines, indoles, tetrahydroquinolines, benzomorpholines, phenoxazines, dihydrodibenzoxazepines, tetrahydroisoquinolines, tetrahydroisoquinolinones and tetrahydrobenzazepines. In contrast to the use of norbornene in a catalytic manner, we demonstrated that heterocycles could also be synthesized by the incorporation of strained alkenes. We developed a conceptually novel approach to generate nitrogen heterocycles by using norbornadiene as an acetylene synthon. A palladium-catalyzed annulation of substituted haloanilines with norbornadiene led to functionalized indolines. These indolines could be rapidly converted to benzenoid-substituted indoles and tricyclic indolines, which form the core of many biologically active compounds. Extension to the use of substituted halobenzamides led to functionalized isoquinolinones. Finally, we embarked on a study to perform selective palladium-catalyzed C-H functionalization reactions with N-iodoarylpyrroles and strained alkenes. We will present the reaction conditions necessary to favour aryl C-H functionalization over pyrrole C-H functionalization.
102

Development of Rhodium-catalyzed Reactions for the Enantioselective Desymmetrization and Carbonylation of meso Alkenes

Menard, Frederic 15 September 2011 (has links)
This thesis describes the discovery of catalytic reactions that create carbon-carbon bonds stereoselectively between substrates bearing an alkene and organoboronic acids reagents. Chiral rhodium(I) catalysts were found to react with various meso-symmetrical substrates, thereby resulting in enantioselective desymmetrization reactions. The methodologies presented herein allow the rapid synthesis of several chiral functionalized molecules; including branched homoallylic alcohols, cyclopentenyl hydrazines, and ketohydrazines. The thesis is divided according to three main transformations: asymmetric allylic substitution of allylic carbonates, asymmetric ring-opening of [2.2.1]-diazabicyles, and carbonylation of alkenes or alkynes. Chapter 2 details the investigations of a ligand-controlled catalytic process to prepare either trans-2-arylcyclopent-3-enols (up to 94% ee), or trans-4-arylcyclopent-2-enols (up to 99% ee) as the major products starting from cyclic meso allylic dicarbonates. This rhodium-catalyzed methodology was extended to include linear allylic dicarbonates, thereby yielding chiral 2-arylbut-3-enols with up to 95% ee. An enantioselective desymmetrization of strained alkenes by ring-opening of meso bicyclic hydrazines is described in Chapter 3. The reaction allows one to prepare trans-2-arylcyclopent-3-enyl hydrazides with up to 99% ee. In addition, an enantioselective hydroarylation process was identified to yield 5-aryl-2,3-diazabicyclo[2.2.1]heptanes. Mechanistic investigations showed that the reaction proceeds via an unusual C-H activation/1,4-migration of the rhodium catalyst. Finally, Chapter 4 outlines the development of a mild catalytic acylation of pi systems. This mode of reactivity was optimized to promote the desymmetrization of [2.2.1]-diazabicycles via a formal allylic substitution with acyl anions as nucleophiles. The method yields densely functionalized trans-2-ketocyclopent-3-enyl hydrazides. In addition, preliminary studies demonstrate that the rhodium(I)-catalyzed acyl anion addition is also possible with other pi electrophiles. For example, with alkyne, it provided a synthesis of cyclopentenones that complements the Pauson-Khand reaction. Overall, the catalytic transformations reported herein give access to seven classes of products stereoselectively; starting from simple reagents.
103

Acyl Phosphates: Biomimetic Reagents for Selective Acylation in Water

Dhiman, Raj 21 August 2012 (has links)
Acyl groups in biochemical reactions are activated as acyl adenylates; such intermediates are generated by a reaction with ATP. Acyl adenylates are mixed carboxylic-phosphoric anhydrides which are potentially useful as biomimetic reagents for acylation reactions in water. These species have been reported to be unstable and have been isolated without purification. Since the adenylate portion is necessarily complex because it originates from ATP, we reasoned that using a simple alkyl group in place of adenosine might allow the biomimetic process to proceed without the difficulties reported. Our laboratory has developed routes towards such acyl phosphate alkyl monoesters and we have used them for several applications. Such materials react rapidly and selectively with amines in order to produce amides. While reactions utilizing lanthanide ions allow for the selective monoacylation of diols through bis-dentate chelates of the lanthanide. However, the efficiency of diol acylation is limited due to significant hydrolysis of the phosphate reagent and the requirement of a stoichiometric amount of the lanthanide ion. Therefore, three distinct approaches towards improving the efficiency of lanthanide promoted acylation were investigated: addition of an inert co-solvent in an attempt to reduce hydrolysis, eliminating the stoichiometric requirement of the lanthanide by addition of MgII, and the development of immobilized lanthanides as catalysts for acylation. Finally, aminoacyl phosphates are biomimetically activated amino acids and in principle should function as peptide synthesis reagents. The stability and solubility of the activated materials in water presents an opportunity to perform aqueous peptide coupling; such a process is limited by the fact that common peptide coupling agents are either insoluble or unstable in water. Therefore, we investigated the reactions of aminoacyl phosphates with amino acid esters. We find that peptides form readily in buffered solutions, establishing a basis for a general protocol for aqueous amino acid coupling and could be adapted for applications such as solid phase peptide synthesis.
104

Unprotected Aziridine Aldehydes in Isocyanide-based Multicomponent Reactions

Rotstein, Benjamin Haim 19 December 2012 (has links)
While unprotected amino aldehydes are typically not isolable due to imine formation and consequent polymerization, stable unprotected aziridine aldehydes are useful and available reagents. Moreover, reversible hemiacetal and hemiaminal formation enable these compounds to reveal both their electrophilic and nucleophilic functional groups. This exceptional arrangement allows for aziridine aldehyde dimers to participate in and disrupt the mechanisms of an array of well-known organic reactions, including isocyanide-based multicomponent reactions. The scope and selectivity patterns of aziridine aldehyde induced amino acid or peptide macrocyclization have been investigated. A small library of constrained tri-, tetra-, and penta-peptide macrocycles – representing the most difficult cyclic peptides to synthesize – has been prepared. The scope of aziridine aldehyde participation in multicomponent reactions was also expanded to Ugi and Passerini reactions that do not employ tethered amine and acid functional groups. In order to facilitate cellular imaging of peptide macrocycles a fluorescent isocyanide reagent was prepared and applied to prepare mitochondrial targeting macrocycles. Thioester isocyanide reagents were synthesized to enable rapid assembly of cycle-tail peptides through ligation technology.
105

Synthesis of Beta-(1->6) Linked N-Acetyl-D-Glucosamine Oligosaccharide Glycoconjugates as Potential Vaccine Candidates

Leung, Carmen 24 February 2009 (has links)
Bacterial biofilms are surface associated colonies that are of considerable concern and interest to industry, medicine and research. They are resistant to antibiotics, their host’s defences and are able to survive under harsh conditions. Biofilm formation in many bacterial strains are dependent on the production of a polysaccharide intercellular adhesion (PIA), a beta-(1-->6)-N-acetylglucosamine polymer. Vaccines derived from biologically isolated PIA have shown efficacy against clinically isolated strains of E. coli and pathogenic strains of S. aureus in animal models. Accordingly, chemically synthesized neoglycoconjugates based on PIA glycosides will be developed to serve as lead compounds for the development of new antibiotics as well as vaccines against biofilm dependent infections. Described in this thesis is a comprehensive study of the synthesis of PIA oligosaccharides and their deacetylated equivalents, the strategy for installing a stable linker on the free reducing oligosaccharide terminus and finally the conjugation to a model carrier protein for the development of potential neoglycoprotein vaccines.
106

Synthesis of Highly Functionalized Tetrahydroisoquinolines by a Palladium-catalyzed Domino ortho-Alkylation/Heck Reaction Sequence and Diastereoselective Aryne Diels-Alder Reactions

Turcotte-Savard, Marc-Olivier 15 July 2009 (has links)
We report a palladium-catalyzed, norbornene mediated synthesis of tetrahydroisoquinolines via a domino ortho-alkylation/Heck reaction sequence. The desired products are obtained in moderate to excellent yields starting from readily available aryl iodides. The reaction conditions can be extended to the formation of tetrahydroisoquinolinones and tetrahydrobenzo[c]azepines. The reaction allows for sequential intermolecular and intramolecular ortho-alkylations. However, the product yields are higher with ortho-blocked aryl iodides, which simplify the domino process to one intramolecular ortho-alkylation and a Heck reaction. The Lautens group has previously reported diastereoselective aryne Diels-Alder reactions of benzyne with dienes supporting a chiral auxiliary at its terminal carbon. In an effort to extend this work and allow access to a wider variety of 1,4-dihydronaphthalenes, we attempted the synthesis of dienes supporting a chiral auxiliary at a central carbon. Chiral pyridyne precursors were also synthesized, in an attempt to vary the source of chirality in diastereoselective cycloadditions.
107

Enantioselective Synthesis of Substituted Polycyclic Heterocycles by Rhodium-catalyzed Ring Opening Reactions of Aryne Diels-Alder Adducts

Nguyen, Duc Trung 15 February 2010 (has links)
We report the application of our rhodium-catalyzed nucleophilic ring-opening methodology to the enantioselective synthesis of nitrogen-substituted polycyclic heterocycles. By using a cationic Rh(I) triflate catalyst in the presence of the chiral Josiphos ligand PPF-PtBu2, the ring opening reactions on dihydrooxaquinoline and dihydrooxaisoquinoline using different nucleophiles afford access to multiple dihydroquinolines and dihydroisoquinolones in high yield and high enantioselectivity (up to 99% total yield and >99%ee). A variety of nucleophiles were shown to be compatible with the catalytic system. The electronic effects in the new ring opening reactions were investigated using a variety of nucleophiles. It was found that reactivity and enantioselectivity of the ring opening products depends on the electronic effects as well as the position of the substituents on the substrates. Good yields and high ee of regioisomeric products are obtained using electron donating substituents, whereas electron withdrawing substituents decelerate the reactions.
108

Protecting Group-free Synthesis of Glycosides

Paul, Caroline Emilie 20 March 2012 (has links)
Carbohydrates play major roles in many biological processes. Therefore, the synthesis of oligosaccharides is of considerable interest for biological, medicinal, and pharmacological studies. Many approaches have been developed for the synthesis of oligosaccharides, in which the main focus is often the formation of the glycosidic bonds. Traditional approaches use protecting group strategies that can be time consuming and can result in poor overall yield. This thesis describes the protecting group-free synthesis of a series of glycosyl donors of a range of mono- and disaccharides. These donors can be used to synthesize unprotected glycosyl chlorides, observed in situ. Reaction of the glycosyl chlorides with a variety of nucleophiles afforded the expected displacement products, giving access to a range of O-, N-, and S-linked glycosides, without resorting to the use of protecting groups.
109

Strategies for Protecting Group Free Glycosidation

Cochran, Melissa 06 December 2011 (has links)
The synthesis of glycoconjugates is of interest in biological and medicinal research. There are numerous approaches to the synthesis of glycosides involving protecting group free methods. This thesis outlines what has been achieved in the field and two novel approaches for O-glycosidation. The first approach involves the use of a toluenesulfonohydrazide glycoside with a purification handle designed for simple glycoside purifications. The butyl 3-O-octyl-D-glucopryanoside was successfully synthesized but did not have the desired property of yielding simple-to-purify glycosides as products. The second approach uses a thiouronium glycosyl donor; a variety of glycosidations using this donor were investigated. The glucosyl thiouronium salt donor was shown to undergo glycosidation effectively with simple alcohols.
110

Synthesis and Structural Studies of Oligoproline Macrocycles

Lou, Tiantong 14 December 2011 (has links)
Due to inherent rigidity of oligoproline peptides, forcing the C- and N-terminus in proximity for cyclization can be of significant challenge. To address this issue, a cyclization condition involing the help of amphoteric aziridine aldehydes has been developed. This one step cyclization protocol generally proceeds in high yields and goes to completion in relatively short period of time. Despite their cyclic nature, the resulting molecules display spectroscopic characteristics of polyproline II helices. These macrocycles should facilitate systematic studies of various conformational states of polyproline-containing protein regions.

Page generated in 0.0186 seconds