• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 29
  • 25
  • 23
  • 16
  • Tagged with
  • 227
  • 112
  • 102
  • 77
  • 77
  • 77
  • 43
  • 30
  • 25
  • 24
  • 21
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

QP Partitioning for Radiationless Transitions

Lavigne, Cyrille 18 March 2014 (has links)
This work presents a new implementation of the QP algorithm, a computer method to diagonalize the extremely large matrices arising in multimode vibronic problems. Benchmark calculations are included, showing the accuracy of the program. The QP algorithm is extended to treat multiple electronic surfaces for competitive control and this is demonstrated with an Hamiltonian including three electronic states, a model of the benzene radical cation. Finally, the evolution of zeroth-order states in a simple two electronic states, two dimensional model with a conical intersection is explored, towards building a time-dependent view of overlapping resonances coherent control.
122

Using Flow Cytometry to Evaluate the Functionalization and Targeting of Surface Enhanced Raman Scattering Nanoparticles

Mullaithilaga, Nisa 15 November 2013 (has links)
The effective diagnosis of leukemia subtypes requires the detection of multiple cell surface markers. Current methods of detection use mostly fluorophores, which are limited by their large spectral bandwidths, photobleaching, and incompatibility with histological stains used for morphological assessments. Antibody-conjugated Surface enhanced Raman scattering (SERS) nanoparticles is an alternative tool that overcomes these limitations. A current drawback of SERS is the lack of available tools to analyze the bioconjugation of antibodies to nanoparticles following EDC/sulfo-NHS cross-linking, which produces inconsistent results and determines the efficacy of SERS probe targeting. This study uses the flow cytometry approach to evaluate SERS particles by incorporating FITC and DyLight650 secondary antibodies. Flow cytometry was also used to assess targeting of particles to markers on LY10 cells and CLL cells and to detect SERS signals by inserting a 710 BP 10nm FWHM filter specific for MGITC.
123

Using Flow Cytometry to Evaluate the Functionalization and Targeting of Surface Enhanced Raman Scattering Nanoparticles

Mullaithilaga, Nisa 15 November 2013 (has links)
The effective diagnosis of leukemia subtypes requires the detection of multiple cell surface markers. Current methods of detection use mostly fluorophores, which are limited by their large spectral bandwidths, photobleaching, and incompatibility with histological stains used for morphological assessments. Antibody-conjugated Surface enhanced Raman scattering (SERS) nanoparticles is an alternative tool that overcomes these limitations. A current drawback of SERS is the lack of available tools to analyze the bioconjugation of antibodies to nanoparticles following EDC/sulfo-NHS cross-linking, which produces inconsistent results and determines the efficacy of SERS probe targeting. This study uses the flow cytometry approach to evaluate SERS particles by incorporating FITC and DyLight650 secondary antibodies. Flow cytometry was also used to assess targeting of particles to markers on LY10 cells and CLL cells and to detect SERS signals by inserting a 710 BP 10nm FWHM filter specific for MGITC.
124

Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier

Zia, Haider 07 January 2011 (has links)
There has been much work on electron emission. It has lead to the concept of the photon and new electron sources for imaging such as electron microscopes and the rst formulation of holographic reconstructions [1-6]. Analytical derivations are important to gain physical insight into the problem of developing better electron sources. However, to date, such formulations have su ered by a number of approximations that have masked important physics. In this thesis, a new approach is provided that solves the Schrodinger wave equation for photoemission from a single atom tungsten tip barrier or more generally, for photoemission from a Schottky triangular barrier potential, with or without image potential e ects. We describe the system, then introduce the mathematical derivation. We conclude with the applications of the theory.
125

Time-dependent Photomodulation of a Single Atom Tungsten Tip Tunnelling Barrier

Zia, Haider 07 January 2011 (has links)
There has been much work on electron emission. It has lead to the concept of the photon and new electron sources for imaging such as electron microscopes and the rst formulation of holographic reconstructions [1-6]. Analytical derivations are important to gain physical insight into the problem of developing better electron sources. However, to date, such formulations have su ered by a number of approximations that have masked important physics. In this thesis, a new approach is provided that solves the Schrodinger wave equation for photoemission from a single atom tungsten tip barrier or more generally, for photoemission from a Schottky triangular barrier potential, with or without image potential e ects. We describe the system, then introduce the mathematical derivation. We conclude with the applications of the theory.
126

Lipid Bilayers as Surface Functionalizations for Planar and Nanoparticle Biosensors

Ip, Shell Y. 05 December 2012 (has links)
Many biological processes, pathogens, and pharmaceuticals act upon, cellular membranes. Accordingly, cell membrane mimics are attractive targets for biosensing, with research, pathology, and pharmacology applications. Lipid bilayers represent a versatile sensor functionalization platform providing antifouling properties, and many receptor integration options, uniquely including transmembrane proteins. Bilayer-coated sensors enable the kinetic characterization of membrane/analyte interactions. Addressed theoretically and experimentally is the self-assembly of model membranes on plasmonic sensors. Two categories of plasmonic sensors are studied in two parts. Part I aims to deposit raft-forming bilayers on planar nanoaperture arrays suitable for multiplexing and device integration. By vesicle fusion, planar bilayers are self-assembled on thiol-acid modified flame-annealed gold without the need for specific lipid head-group requirements. Identification of coexisting lipid phases is accomplished by AFM imaging and force spectroscopy mapping. These methods are successfully extended to metallic, plasmon-active nanohole arrays, nanoslit arrays and annular aperture arrays, with coexisting phases observed among the holes. Vis-NIR transmission spectra of the arrays are measured before and after deposition, indicating bilayer detection. Finally, the extraction of membrane proteins from cell cultures and incorporation into model supported bilayers is demonstrated. These natural membrane proteins potentially act as lipid-bound surface receptors. Part II aims to encapsulate in model lipid bilayers, metallic nanoparticles, which are used as probes in surface enhanced Raman spectroscopy. Three strategies of encapsulating particles, and incorporating Raman-active dyes are demonstrated, each using a different dye: malachite green, rhodamine-PE, and Tryptophan. Dye incorporation is verified by SERS and the bilayer is visualized and measured by TEM, with support from DLS and UV-Vis spectroscopy. In both parts, lipid-coated sensors are successfully fabricated and characterized. These results represent important and novel solutions to the functionalization of plasmonic surfaces with biologically relevant cell membrane mimics.
127

Hydrophobic Hydration of a Single Polymer

Li, Isaac Tian Shi 17 December 2012 (has links)
Hydrophobic interactions guide important molecular self-assembly processes such as protein folding. On the macroscale, hydrophobic interactions consist of the aggregation of "oil-like" objects in water by minimizing the interfacial energy. However, the hydration mechanism of small hydrophobic molecules on the nanoscale (~1 nm) differs fundamentally from its macroscopic counterpart. Theoretical studies over the last two decades have pointed to an intricate dependence of molecular hydration mechanisms on the length scale. The microscopic-to-macroscopic cross-over length scale is critically important to hydrophobic interactions in polymers, proteins and other macromolecules. Accurate experimental determination of hydration mechanisms and their interaction strengths are needed to understand protein folding. This thesis reports the development of experimental and analytical techniques that allow for direct measurements of hydrophobic interactions in a single molecule. Using single molecule force spectroscopy, the mechanical unfolding of a single hydrophobic homopolymer was identified and modeled. Two experiments examined how hydrophobicity at the molecular scale differ from the macroscopic scale. The first experiment identifies macroscopic interfacial tension as a critical parameter governing the molecular hydrophobic hydration strength. This experiment shows that the solvent conditions affect the microscopic and macroscopic hydrophobic strengths in similar ways, consistent with theoretical predictions. The second experiment probes the hydrophobic size effect by studying how the size of a non-polar side-chain affects the thermal signatures of hydration. Our experimental results reveal a cross-over length scale of approximately 1 nm that bridges the transition from entropically driven microscopic hydration mechanism to enthalpically driven macroscopic hydration mechanism. These results indicate that hydrophobic interactions at the molecular scale differ from macroscopic scale, pointing to potential ways to improve our understanding and predictions of molecular interactions. The system established in this thesis forms the foundation for further investigation of polymer hydrophobicity.
128

Développement de composés conjugués en étoile de première génération incluant des liens azométhines et études électrochimiques et photophysiques

Skalski, Thomas 08 1900 (has links)
Les matériaux conjugués sont de nos jours très utilisés dans de nombreuses applications ainsi qu’en recherche. L’enchainement des liaisons π-σ-π permet la délocalisation des électrons et d’obtenir différentes propriétés comme la conduction, la fluorescence, la chélation, etc. Ainsi, de nombreux dispositifs utilisent ces caractéristiques en vue d’obtenir de nouveaux matériaux révolutionnaires comme les cellules solaires, les transistors à effet de champs, les dispositifs électrochromiques, etc.. Les dispositifs électrochromiques font partie des dispositifs en vogue. Ils sont capables de changer de couleur selon le potentiel électrique appliqué. Ils se distinguent par la simplicité du mode de conception et ils ne nécessitent pas de fonctionner dans des conditions drastiques comme une atmosphère contrôlée. Ces dispositifs sont actuellement utilisés et commercialisés comme fenêtre intelligente, camouflage, papier électronique et carte de visite personnalisée pour n’en nommer que quelques-uns. Deux propriétés sont essentielles pour que des composés puissent être utilisés dans ces familles de dispositifs : la réversibilité à l’oxydation et la stabilité à l’air et à la lumière. Dans le groupe de recherche du professeur W.G. Skene, l’axe principal de recherche est basé sur la conception de nouveaux matériaux conducteurs comportant des liaisons azométhines. Les principaux matériaux étudiés sont des dérivés de thiophènes et de fluorènes. De précédents résultats ont montré que plusieurs produits issus de la réaction de condensation entre les dérivés du 2,5-diaminothiophène et de thiophènes diformylés menaient à des produits possédant d’excellentes propriétés photophysiques et électrochimiques. C’est en partant de ces résultats encourageants qu’il a été choisi de synthétiser une nouvelle famille de produits avec un nouveau substrat fonctionnalisé. Ce dernier possède d’excellentes propriétés électrochimiques et photophysiques : la triphénylamine. Deux familles de produits ont été synthétisées qui possèdent toutes comme cœur une triphénylamine. Cette dernière a été modifiée de façon à créer une, deux ou trois liaisons azométhines avec différents thiophènes. Deux dérivés du thiophène ont été choisis afin d’étudier l’influence des groupements donneurs et accepteurs sur ces nouveaux types de composés encore jamais étudiés. Les résultats des différentes synthèses et analyses ont été effectués par RMN, spectrométrie de masse, spectrométrie d’absorbance UV-Visible, fluorescence et voltampérométrie cyclique sont rapportées dans le présent recueil. / Conjugated materials are been used in many applications and fundamental research, owing in part to their high degree of conjugation. They further have opto-electronic properties that are compatible for use as conjugated materials in many devices including solar cells, organic field effect transistors, organic light emitting diodes and electrochromic devices. The latter are of particular interest because their colors that can be changed when a potential is applied. The advantage of these color switching materials compared to other opto-electronic devices is their simple fabrication that can be done under ambient conditions. Electrochromic devices have found many consumer applications including mirrors, tunable windows, camouflage and electronic paper, to name a few examples. The focus of our research group is the preparation of new conjugated materials based on azomethine. Previous efforts from the group demonstrated that azomethines having the required properties for use in electrochromic devices (electrochemical reversibility and air stability) were possible when using a 2,5-diaminothiophene derivative as a building block. It was also demonstrated that color tuning of both the neutral and oxidized states was possible when coupling 2,5-diaminothiophene with various heterocyclic arylaldehydes. Despite the many examples of azomethines studied in our group, fundamental structure-property relationships of these conjugated materials are still not understood. The objective of this thesis was therefore to prepare to new conjugated azomethines from triarylamine aldehydes. The objective was also to examine the opto-electronic properties of these novel azomethines, including the effect of the degree of conjugation and type of triphenylamine aldehyde precursor on the absorbance, electrochemical properties, and fluorescence.
129

Développement de composés conjugués en étoile de première génération incluant des liens azométhines et études électrochimiques et photophysiques

Skalski, Thomas 08 1900 (has links)
No description available.
130

The investigation of potential corrosion resistant phosphorus containing and polymer films using x-ray photoelectron spectroscopy

Asunskis, Amy Louise January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Peter M.A. Sherwood / This dissertation will examine the fabrication of different phosphorus containing films and their use as corrosion preventative films and adhesion materials between polymers and metal and metal alloys. Orthophosphate films are used in several metals and metal alloys to prevent corrosion and promote adhesion between paints or polymers and metal substrates. One key component is to examine the use of different phosphorus containing acids that might lead to phosphorus containing films which would compliment the mainly orthophosphate films currently in use. The objectives of this study are to see if it is possible to fabricate different phosphorus containing films, use them to adhere polymers to metal and metal alloys, and test the phosphorus containing films’ and polymer films’ corrosion protection properties. The thermoplastic resin, Poly(ether ketone ketone), or PEKK was found to adhere well to different phosphorus containing films and protect the underlying layers from oxidation in 4-D water. The phosphorus containing films were created by electrochemical deposition in different 5 M phosphorus containing acids. The metal or metal alloy was abraded to remove the native oxide and treated in the electrochemical cell. The second, separate polymer films were created by dip coating the metal or metal alloy in a polymer solution. The film thickness in both cases was controlled to be less than 100Å to ensure that the underlying metal or metal alloy could be detected. The surface chemical analysis was collected using X-ray photoelectron spectroscopy, or XPS. Core level and valence band XPS were used to distinguish the differences in the chemistry at the surfaces. The valence band XPS spectra were interpreted using spectra generated by multiple scattered wave calculations and band structure calculations. In the cases were more than one film was present subtraction and addition spectrum were used to interpret the chemistry in the interface region of the films.

Page generated in 0.0139 seconds