• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 417
  • 93
  • 7
  • 1
  • Tagged with
  • 518
  • 127
  • 121
  • 41
  • 40
  • 38
  • 34
  • 33
  • 31
  • 31
  • 30
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Automated Micropipette Aspiration of Single Cells

Shojaei-Baghini, Ehsan 26 November 2012 (has links)
This research presents a system for mechanically characterizing single cells using automated micropipette aspiration. Using vision-based control and position control, the system controls a micromanipulator, a motorized translation stage, and a custom-built pressure system to position a micropipette (4 $\mu$m opening) to approach a cell, form a seal, and aspirate the cell into the micropipette for quantifying the cell's elastic and viscoelastic parameters as well as viscosity. Image processing algorithms were developed to provide controllers with real-time visual feedback and to accurately measure cell deformation behavior on the fly. Experiments on both solid-like and liquid-like cells demonstrated that the system is capable of efficiently performing single-cell micropipette aspiration and has low operator skill requirements. Once the system was validated, it was used to study voided urine cells. In this study, the mechanical properties of bladder carcinoma cells were investigated.
192

Evaluation and Design of a Globally Applicable Rear-locking Prosthetic Knee Mechanism

Wyss, Dominik 27 November 2012 (has links)
A rear locking prosthetic knee joint with a durable, rear Automatic Stance-Phase Lock (ASPL), was developed to investigate the versatility of the (ASPL) mechanism in improving the functionality of prosthetic knees appropriate for a global market. An international survey and a Quality Function Deployment identified deficits with existing prosthetic knee mechanisms and established the most influential design parameters. Work on the knee design was completed following a comparative stability analysis of different knee mechanisms which justified the initial design. Solid models were generated with computer design software and a prototype was produced and structurally tested. Finally, clinical pilot testing was conducted on a unilateral transfemoral amputee, and various gait variables were assessed. As hypothesized, the knee performed close to the level of a conventional six-bar knee providing highly effective stance-phase control and the pilot test showed that improvements to the swing-phase response could further reduce the asymmetry of gait.
193

Investigating the Mechanisms of Rupture and Dewetting of Quiescent Thin Films

Mulji, Neil Maheshchandra 15 February 2010 (has links)
Controlling and predicting rupture and dewetting of quiescent thin water films, hundreds of microns thick, was studied experimentally. Wax, polycarbonate, steel and aluminium surfaces were immersed in water; the water level was lowered to form thin films above the surfaces. Spontaneous film rupture only occurred on wax, a low-energy surface. Films ruptured at the edges of the other—high-energy—surfaces. Increased surface roughness decreased chances of rupture and dewetting in the film. Introducing large wax or steel protrusions (on the order of millimetres) on smooth surfaces showed films rupturing above the protrusions and adhering to them; further thinning caused rupture and dewetting away from the protrusions. Entrapped air bubbles, injected through the surface and into the film, ruptured as they breached the film surface to form stable holes in the film if it was sufficiently thin. Entrapped air was the best means of rupturing films on all surfaces.
194

A Numerical Model for Oil/Water Separation from a Solid Particle

Fan, Eric Sheung-Chi 26 July 2010 (has links)
A computational fluid dynamics model has been developed to study an oil-coated particle immersed in a uniform aqueous flow, to determine the conditions that favour oil separation. The governing flow equations are discretized using a finite volume approach, and the oil/water interface is captured using the Volume-of-Fluid (VOF) method in a 2D spherical coordinate system. The model predicts different mechanisms for oil separation. At a Reynolds number, Re, equal to 1, and at a low capillary number, Ca << 1, the high interfacial tension can induce rapid contact line motion, to the extent that the oil film can advance past its equilibrium position and separate from the particle. This mechanism requires that the contact angle measured through the oil phase is large. On the other hand, as Ca approaches 1, the shear exerted by the external flow stretches the oil into a thread that will eventually rupture and separate.
195

Biomimetic Design Applied to the Redesign of a PEM Fuel Cell Flow Field

Currie, Jessica Marie 17 December 2010 (has links)
In this thesis biomimetic design is applied to the redesign of a PEM fuel cell flow field. A number of designs inspired by biological phenomena were developed to address the problem of attaining a uniform current density distribution across a PEM fuel cell. These designs are evaluated using a numerical model. One design, inspired by Murray’s law of branching in plants and animals, is further evaluated using and a physical model and comparing it to a commercial triple serpentine flow field. Improvements in pressure drop were seen for the Murray’s law inspired flow field, however, it was found to be prone to flooding. If this flow field design were to be applied to high temperature membrane materials, materials that can operate above 100 °C where water is always in the vapor state, the mass transfer and reduced pressure drop advantages of the Murray flow field could be fully achieved.
196

Investigation of Surface Properties and Heterogeneity in Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Fishman, J. Zachary 31 December 2010 (has links)
The development of improved water management strategies for the polymer electrolyte membrane fuel cell (PEMFC) could stand to benefit from an improved understanding of the surface and internal structure of the gas diffusion layer (GDL). The GDL is a fibrous porous material enabling mass transport between the PEMFC catalyst layer and flow fields. Fluorescence-based visualizations of liquid water droplet evaporation on GDL surfaces were performed to investigate water droplet pinning behaviours. The heterogeneous in-plane and through-plane porosity distributions of untreated GDLs were studied using computed tomography visualizations. The through-plane porosity distributions were utilized to calculate heterogeneous local tortuosity, relative diffusivity, and permeability distributions. Finally, the heterogeneous through-plane porosity distributions of GDLs treated for increased hydrophobicity were investigated. This work provides new insight into GDL material properties to better inform future PEMFC models.
197

A Novel 3D Sensory System for Robotic Urban Search and Rescue Missions

Mobedi, Babak 12 January 2011 (has links)
Urban Search and Rescue (USAR) is the emergency response function that deals with the collapse of man-made structures. USAR environments contain concrete rubble, dust and debris, and provide poor lighting conditions. Due to the dangers that USAR rescue workers and their canines face, robots have become of interest in aiding rescue workers in searching. Experiences with robots in USAR missions have shown that a compact 3D sensor for 3D mapping of the environment is beneficial in providing the robot and identified victims’ locations within the structurally unstable environment. This thesis presents the developments of a novel 3D sensory system that provides both 3D and 2D texture information for mapping of cluttered unknown USAR environments. The sensor has been integrated into a robot platform, and experiments conducted to validate its usability in such applications. The experimental results show the potential for using this sensor in USAR robot mission.
198

Resolution Enhancement of Ultrasonic Signals using Autoregressive Spectral Extrapolation

Shakibi, Babak 25 August 2011 (has links)
Time of Flight Diffraction (TOFD) is one of the most accurate ultrasonic methods for crack detection and sizing in pipeline girth welds. Its performance, however, is limited by the temporal resolution of the signal. In this thesis, we develop a signal processing method based on autoregressive spectral extrapolation to improve the temporal resolution of ultrasonic signals. The original method cannot be used in industrial applications since its performance is highly dependent on selection of a number of free parameters. This method is modified by optimizing its various steps and limiting the number of free parameters, and an automated algorithm for selection of values for the remaining free parameters is proposed based on the analysis of a large set of synthetic signals. The performance of the final algorithm is evaluated using experimental data; it is shown that the uncertainty in crack sizing accuracy can be reduced by as much as 80%. Furthermore, the proposed method is shown to be capable of resolving overlapping echoes; therefore, smaller cracks that have echoes that are not clearly resolved in the raw signal, can be detected and sized in the enhanced signal.
199

Task Re-allocation Methodologies for Teams of Autonomous Agents in Dynamic Environments

Sheridan, Patricia Kristine 25 August 2011 (has links)
Two on-line task re-allocation methodologies capable of re-allocating agents to tasks on-line for minimum task completion time in dynamic environments are presented herein. The first methodology, the Dynamic Nearest Neighbour (DNN) Policy, is proposed for the operation of a fleet of vehicles in a city-like application of the dial-a-ride problem. The second methodology, the Dynamic Re-Pairing Methodology (DRPM) is proposed for the interception of a group of mobile targets by a dynamic team of robotic pursuers, where the targets are assumed to be highly maneuverable with a priori unknown, but real-time trackable, motion trajectories. Extensive simulations and experiments have verified the DNN policy to be tangibly superior to the first-come-first-served and nearest neighbour policies in minimizing customer mean system time, and the DRPM to be tangibly efficient in the optimal dynamic re-pairing of multiple mobile pursuers to multiple mobile targets for minimum total interception time.
200

The Formation and Drying of Thin Paint Films Sprayed on a Solid Surface

Kadoura, Mahmoud 08 December 2011 (has links)
The impact dynamics and drying of paint films sprayed on steel were experimentally investigated. The rupture of sprayed liquid films was first photographed on different substrates. The critical film thickness, below which a film would break, was observed to increase with increasing advancing liquid-solid contact angle, and was unaffected by liquid viscosity for a given substrate. For viscous paint, it was observed that there is no rupture or splashing from a paint droplet impacting a solid substrate or another paint drop or film. For paint films drying at room temperature, mass fluxes were measured and correlated with a simple analytical model based on transient diffusion, and showed good agreement. The mass flux of sprayed paint films decreased slightly with time, and the volatile concentration decreased appreciably. For sprayed paint films cured with heat, there is a minimum stand-time in order to cure a film without any entrapped bubbles.

Page generated in 0.0157 seconds