231 |
Hygrothemal Degradation of Toughened Adhesive Joints: The Characterization and Prediction of Fracture PropertiesAmeli, Aboutaleb 29 August 2011 (has links)
The main objective of this work was to develop a framework to predict the fracture toughness degradation of highly toughened adhesive joints using fracture test data obtained by accelerated open-faced degradation method.
First, the mixed-mode fracture resistance (R-curve) behavior of two rubber-toughened epoxy-aluminum adhesive systems was measured and could be fit in a bilinear R-curve model. Then, open-faced DCB (ODCB) specimens of the same adhesive systems were aged over a relatively wide range of temperature, relative humidity (RH) and time, dried and tested to characterize the irreversible evolution of the mixed-mode fracture R-curves. The R-curve bilinear model parameters of adhesive system 1 varied significantly with degradation while that of adhesive system 2 remained unchanged.
The absorption and desorption of water in the adhesives cast wafers was measured gravimetrically. The absorption data were fitted to a new sequential dual Fickian (SDF) model while water desorption was modeled accurately using Fick’s law. A significant difference was observed between the amounts of retained water in the two adhesives after drying.
An exposure index (EI) was defined as the integral of water concentration over time and calculated at all points in the ODCB and closed DCB joints. The fracture toughness of the closed joints was then predicted from these calculated EIs by making reference to fracture toughness data from the ODCB specimens degraded to various EI levels. To verify the predictions, fracture experiments and analyses were carried out for closed DCB joints. Good agreement was found between the predicted and experimentally measured fracture toughness values for the degraded closed DCB joints.
Furthermore, the crack path and fracture surface characteristics were evaluated as a function of the degree of aging using optical profilometery. The unexpected crack path in the mixed-mode fracture of unaged open-faced DCB specimens was addressed. The results showed a strong relationship between fracture surface parameters and the critical strain energy release rate, Gcs, irrespective of the type of adhesive and exposure condition.
|
232 |
Discrete Element Modeling of Granular Flows in Vibrationally-fluidized BedsEmami Naeini, Mohammad Saeid 30 August 2011 (has links)
The main objective of the project was to develop a model for the motion of granular media under vibration in a tub vibrator. For such a system, it was decided that a discrete element method (DEM) was the most appropriate tool to model bulk velocity and circulation of media. In the first phase of the work, a vibratory finisher was modified to introduce planar vibration into a single layer of particles. The motion of the tub was measured using accelerometers and the corresponding granular media behavior was determined by video recording. A discrete element model, based on Cundall’s approach to contact, was developed to model granular flow in different vibratory beds, and the results were compared with experimental measurements of bulk flow velocity and bed expansion for the tub finisher. The sensitivity of the model predictions to the contact parameters was considered and the parameters were optimized with respect to the experimental results. After optimization, the difference between the model predictions of the bulk flow velocity and the measurements was less than 20% at four locations in media beds of two depths. The average bulk density of the vibrating beds was also predicted to be within 20% of the measured values.
In the next phase, a two-dimensional discrete element model was developed to model single-cell circulation in vibratory beds that had both vertical and horizontal components of motion. The model predictions were compared with experimental measurements of the onset and growth of circulation in beds of steel and glass spheres as a function of bed depth, inter-particle and wall friction coefficients, and the amplitude of vibration. While the values from the DEM showed an error of up to 50% in the predicted circulation strength, depending on the type of the media and system conditions, the trends predicted by the model closely matched those in the experiments. Finally, a physical model was developed to describe the relationship between the onset and direction of circulation with the vibration of the container. A similar model was used to describe the experimental results as well as the transition in circulation patterns in terms of the resultant shear forces at the vibrating container walls and the interlocking of media close to the container walls. It was also demonstrated that a two-dimensional DEM could model a granular flow in which the media had three-dimensional contact and freedom of movement, but that was driven by vibrations in a plane.
In summary, it was found that the linear optimization procedure for the contact parameters is an efficient way to improve the results from DEM. Additionally, the circulation in a tub-vibrator increased with the depth of the particulate media in the container, and with the magnitude of the wall-particle and particle-particle friction coefficients. The strength of circulation also increased with the amplitude of vibration. A strong correlation existed between the total shear force along the vibrating container walls and the circulation behavior. Bulk circulation increased sharply when increasing bed depth increased the pressure and the shear forces at the walls and between particle layers. It was also concluded that dimensionless bed depth (the ratio of bed depth to particle diameter) was not a proper dimensionless group when discussing the circulation behavior and it should act in conjunction with other parameters.
|
233 |
Evaluation of Chemiluminescence as a Measurement Option for Industrial Flame Monitoring and Process ControlGeddis, Philip James 19 January 2010 (has links)
Ultraviolet-visible chemiluminescent emission features in laboratory-scale flames have been shown by several researchers to correlate well with the flame's equivalence ratio, and it has been suggested that this relation could be used to actively control flames. This study investigated the feasibility of extending this knowledge to the industrial setting. Radiative emissions from basic oxygen furnace (BOF) and thermal generating station burner flames were mainly characterized by thermally-induced greybody spectra; emissions from electronically excited species of OH*, OH*, and CO2* were generally weak and did not offer any unique information that could be used as part of a flame diagnostic system. A sub-study which assessed the impact of biomass cofiring demonstrated that emissions of SO2, NOx, and fossil-CO2 could be reduced with direct fuel replacement. The sensor system could be used as a pyrometer, and as part of a burner balancing strategy to counter increased CO emissions and decreased efficiency.
|
234 |
Aromatic Hydrocarbon Sampling and Extraction From Flames Using Temperature-swing Adsorption/Desorption ProcessesChan, Hei Ka Tim 23 August 2011 (has links)
The measurement of Polycyclic Aromatic Hydrocarbons (PAHs) in flames is essential for the understanding of soot formation. In comparison to conventional aromatics-sampling techniques, a new technique was proposed that involves fewer manual operations and no hazardous extraction solvents. Apparatus and experimental procedures of the newly proposed adsorptive-sampling and desorptive-extraction technique for aromatic-hydrocarbon measurements were established in this study. The capabilities and limitations of this new technique were assessed in terms of limits of detection, sampling locations and data repeatability.
The accuracy of this technique was also evaluated. Aromatic-hydrocarbon species concentrations were measured in laminar co-flow diffusion flames of ethylene (C2H4) and synthetic paraffinic kerosene (SPK). The results obtained from the ethylene flame were compared to its numerical simulation, with the goal of achieving agreement within an order of magnitude. The differences between simulated values and experimental measurements, along with the limitations of the technique, were used as an indication of the accuracy of the technique.
|
235 |
Characteristics of Engine Emissions from Different Biodiesel BlendsWan, Curtis 04 January 2012 (has links)
Engine exhaust characteristics from two different biodiesel blends, formulated from soy and animal fat biodiesel blended with ultra-low sulphur diesel, were tested during two different test programs with similar operating conditions. Engine exhaust was measured in real-time for nitrogen oxides, total hydrocarbons, particle-bound polyaromatic hydrocarbons, and particle size distribution. Diesel particulate matter was collected on filters and subsequently analyzed for organic carbon, elemental carbon, soluble organic fraction, cations, and anions. The use of biodiesel was found to increase nitrogen oxide emissions, but decrease total hydrocarbons and particulate matter emissions. The most significant impact on emissions was the difference between the engine operating conditions rather than the fuel type. Minor differences were found between the soy and animal fat biodiesel blends through speciation of the diesel particulate matter.
|
236 |
Design of a Catalytic Combustor for Pure Methanol and HTPEM Fuel Cell Anode Waste GasBell, Andrew James Stewart Blaney 24 July 2012 (has links)
Transportation sector CO2 emissions contribute to global warming. Methanol generated from clean energy sources has been proposed as a transportation fuel as an alternative to gasoline or diesel to
reduce emissions. Catalytic methanol-steam reformers can be combined with high temperature polymer electrolyte membrane (HTPEM) fuel cell systems to create compact electrical power modules which run on liquid methanol. These modules combine the efficiency of a fuel cell system
with the convenience of using a traditional, liquid hydrocarbon fuel.
Catalytic methanol-steam reformers require a heat source as the methanol-steam reforming process is endothermic. The heat source for this system will initially be from the catalytic combustion of either pure methanol, during startup, or from HTPEM fuel cell anode waste gas during system
operation. Efficient use of catalyst requires effective premixing of the fuel and air. This study will investigate parameters affecting premixing and their effect on temperature distributions and emissions.
|
237 |
Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol BlendKhan, Umer 20 November 2012 (has links)
A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized swirl combustion chamber was designed to replace the original evaporative burner due to bio-oil’s nondistillable nature. This also required modifications of the engine’s control systems. Efficiencies for the bio-oil/ethanol blend were found be higher than those of diesel due to the higher heat loss incurred with diesel. Based on a modified efficiency, which disregarded the heat loss through the combustion chamber, power efficiencies were found to be comparable. The maximum time of operation with the bio-oil/ethanol blend was approximately 97 minutes due to the clogging of the narrow passages. Carbon monoxide emissions were higher for the bio-oil/ethanol blend due to the operation conditions of the combustion chamber. Oxides of nitrogen emissions were also higher for the bio-oil/ethanol blend due to its inherent nitrogen content.
|
238 |
The Effect of Pressure and Conjugate Heat Transfer on Soot Formation ModellingEaves, Nickolas 22 November 2012 (has links)
The first goal of this thesis is to validate a detailed co-flow flame soot formation model for high pressure applications. The second goal is to use this detailed model to understand the effect pressure has on soot formation. The third goal is to note any deficiencies in the model, and the fourth is to remedy these issues.
The thesis is divided into two research studies. The first study validates the model for high pressure use against ethane-air co-flow diffusion flames from 2 to 15 atm. After validation, the results are used to determine the impact pressure has on the three main soot formation processes.
It is determined that the original model could not account for the flame pre-heating effect. The second study addresses this issue by adapting the model to extend below the fuel tube exit plane, and includes conjugate heat transfer (CHT) between the fluid streams and solid fuel tube.
|
239 |
The Development and Validation of a Simplified Soot Model for use in Soot Emissions Prediction in Natural Gas Fuelled Engine SimulationsShum, Justin 26 November 2012 (has links)
This study employs a novel approach in order to satisfy the need in industry for a computationally inexpensive means to modelling soot formation in engines fuelled by natural gas. The complex geometries found in practical combustion devices along with the requirement to solve turbulent, chemically reacting, and multi-phase flows necessitates this goal. A two-equation model, which tracks soot mass and soot number density, is employed. The goal is to apply this model in engine simulations at Westport Innovations, an industry partner.
Experimental data is used to validate the model in various operating conditions. Numerical data obtained from a detailed sectional soot model is also used to augment available validation data, especially with respect to soot formation/oxidation mechanisms. The developed model shows good agreement compared to experimental data and the detailed sectional soot model among all cases considered and will be further tested and applied in Westport’s natural gas engine simulations.
|
240 |
Development and Characterization of Nickel and Yttria-stabilized Zirconia Anodes for Metal-Supported Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma SprayingMetcalfe, Thomas Craig 13 January 2014 (has links)
Research was performed on the development of relationships between the microstructure of nickel and yttria-stabilized zirconia (YSZ) coatings and the processing parameters used for their deposition by atmospheric plasma spraying (APS). Research was also performed on the development of relationships between the microstructure of plasma sprayed Ni-YSZ coatings and the electrochemical performance of metal-supported solid oxide fuel cells (SOFCs) incorporating these coatings as anodes.
Three APS processes were used to deposit Ni-YSZ coatings: dry-powder plasma spraying (DPPS), suspension plasma spraying (SPS), and solution precursor plasma spraying (SPPS). These processes differ in the form of the feedstock injected into the plasma. The composition of the Ni-YSZ coatings deposited with each spray process could be controlled through adjustment of the plasma gas composition and stand-off distance, as well as adjustment of feedstock properties including agglomerate size fraction for DPPS, NiO particle size and suspension feed rate in SPS, and the enthalpy of decomposition of the precursors used in SPPS. The porosity of the Ni-YSZ coatings could be controlled through the addition of a sacrificial pore forming material to each feedstock, with coating porosities up to approximately 35% being achieved for each coating type.
Metal-supported SOFCs were fabricated to each have anodes deposited with a different plasma spray process, where all anodes had nominally identical composition. The microstructures obtained for each anode type were distinctly different. SPPS led to the most uniform mixing of the smallest Ni and YSZ particles. These anodes most resembled typical structures from anodes fabricated using conventional methods. It was found that the polarization resistance, Rp, associated with the high frequency (> 1 kHz) range of the impedance spectrum correlated to the three phase boundary length (TPBL) density of each anode, with lower Rp values corresponding to higher TPBL densities. It was also found that the Knudsen diffusion coefficient and effective ordinary diffusion coefficient of the porous anodes correlated with the Rp associated with the low frequency (< 1 kHz) range of the impedance spectrum. Therefore, the impedance spectrum can be used to compare microstructural differences among plasma sprayed Ni-YSZ anodes.
|
Page generated in 0.0233 seconds