121 |
Pb-Pb Isotopic and X-ray Tomographic Constraints on the Origin of ChondrulesCharles, Christopher 02 August 2013 (has links)
207Pb*/206Pb* chronometry was used to obtain the ages of Ca,Al-rich inclusions (CAIs) and chondrules found in ancient meteorites. Assuming a 238U/235U=137.88, Pb/Pb ages of chondrules in NWA801 (a CR2 meteorite) are 4564.6±1.0 Ma, chondrules in Mokoia (a CV3 chondrite) are 4564.2±1.1Ma, and CAIs in Mokoia are 4567.9±5.4 Ma. The Pb/Pb age of NWA801 chondrules is concordant with 26Al/26Mg ages of CR chondrules. However if a 238U/235U < 137.88 is used, the age for NWA801 chondrules becomes younger by ~1Ma and discordant with 26Al/26Mg ages of CR chondrules. This suggests either a discrepancy with the U compositions or the initial Mg isotopic compositions of NWA801 chondrules. The shapes of NWA801 chondrules, and blebs of FeNi metal in the meteorite matrix, were further studied by 3D X-ray micro-computed tomography (CT). Most chondrules (92%) were ‘armoured’ with one discontinuous layer of FeNi metal. Two layers of FeNi metal (one on the exterior and one concentric through the interior separated by silicate) were rare <8%. Chondrules and matrix blebs occur as oblates, prolate, spheres and triaxial spheroids. It is proposed that the shapes were made free-floating in the nebula likely by flash-melting precursors into molten droplets that were vibrating as harmonic oscillators that ‘froze-in’ their shapes during cooling. Parent-body metamorphism and shock are not likely processes affecting the matrix-bleb and chondrule shapes. Chondrules with ≥2 FeNi metal layers were likely formed by mergers and not by successive deposition and annealing of metal in multiple flash-melting events. Attempts to obtain 207Pb*/206Pb* ages from chondrules and CAIs by thermal extraction (TE)- TIMS were unsuccessful. However LA-ICP-MS was shown to be useful for rapidly determining Pb isotopic trends in meteorites and unknown objects. In particular, it was shown that 137La (T1/2=60ky) should be detectable in recently fallen meteorites using LaF−4 to suppress the 137Ba
isobar during tandem accelerator mass spectrometry combined with a novel instrumental technique for isobar separation.
|
122 |
Pb-Pb Isotopic and X-ray Tomographic Constraints on the Origin of ChondrulesCharles, Christopher 02 August 2013 (has links)
207Pb*/206Pb* chronometry was used to obtain the ages of Ca,Al-rich inclusions (CAIs) and chondrules found in ancient meteorites. Assuming a 238U/235U=137.88, Pb/Pb ages of chondrules in NWA801 (a CR2 meteorite) are 4564.6±1.0 Ma, chondrules in Mokoia (a CV3 chondrite) are 4564.2±1.1Ma, and CAIs in Mokoia are 4567.9±5.4 Ma. The Pb/Pb age of NWA801 chondrules is concordant with 26Al/26Mg ages of CR chondrules. However if a 238U/235U < 137.88 is used, the age for NWA801 chondrules becomes younger by ~1Ma and discordant with 26Al/26Mg ages of CR chondrules. This suggests either a discrepancy with the U compositions or the initial Mg isotopic compositions of NWA801 chondrules. The shapes of NWA801 chondrules, and blebs of FeNi metal in the meteorite matrix, were further studied by 3D X-ray micro-computed tomography (CT). Most chondrules (92%) were ‘armoured’ with one discontinuous layer of FeNi metal. Two layers of FeNi metal (one on the exterior and one concentric through the interior separated by silicate) were rare <8%. Chondrules and matrix blebs occur as oblates, prolate, spheres and triaxial spheroids. It is proposed that the shapes were made free-floating in the nebula likely by flash-melting precursors into molten droplets that were vibrating as harmonic oscillators that ‘froze-in’ their shapes during cooling. Parent-body metamorphism and shock are not likely processes affecting the matrix-bleb and chondrule shapes. Chondrules with ≥2 FeNi metal layers were likely formed by mergers and not by successive deposition and annealing of metal in multiple flash-melting events. Attempts to obtain 207Pb*/206Pb* ages from chondrules and CAIs by thermal extraction (TE)- TIMS were unsuccessful. However LA-ICP-MS was shown to be useful for rapidly determining Pb isotopic trends in meteorites and unknown objects. In particular, it was shown that 137La (T1/2=60ky) should be detectable in recently fallen meteorites using LaF−4 to suppress the 137Ba
isobar during tandem accelerator mass spectrometry combined with a novel instrumental technique for isobar separation.
|
123 |
Recherche et caractérisation d'exoplanètes à grande séparation autour d'étoiles jeunes de faible masseNaud, Marie-Eve 08 1900 (has links)
No description available.
|
124 |
Analyses de simulations magnétohydrodynamiques du cycle solaireBeaudoin, Patrice 08 1900 (has links)
No description available.
|
125 |
Nouvelles étoiles candidates membres d’associations jeunes localesR. Loubier, Olivier 12 1900 (has links)
No description available.
|
126 |
Modélisation d'observations spectroscopiques, résolues en phase, d'exoplanètes de type Jupiter chaudes avec NIRISS à bord du télescope spatial JWSTArboit, Geneviève 08 1900 (has links)
No description available.
|
127 |
Analyse de l'absorption circumstellaire de WD 1145+017Fortin-Archambault, Maude 08 1900 (has links)
WD 1145+017 est une étoile naine blanche polluée par des métaux avec un astéroïde
en décomposition autour d’elle. Ce système est le premier à montrer la phase de décomposition
active de l’objet polluant, et permet d’en apprendre sur cette phase du phénomène
d’accrétion. Les différentes observations montrent un système très complexe qui
est composé de plusieurs morceaux de l’objet rocheux, d’un disque de poussière et d’un
disque de gaz, tous en orbite autour de la naine blanche polluée. Nous présentons un
modèle de disque de gaz excentrique en précession conçu pour l’étude des zones d’absorption
circumstellaire variables détectées pour WD 1145+017. Ce modèle, inspiré de
celui récemment présenté par Cauley et al., calcule explicitement l’opacité du gaz pour
toutes conditions physiques du disque prédéterminées et prédit la force et la forme de
toutes les zones d’absorption, de l’ultraviolet au visible, à n’importe quelle phase du
cycle de précession. Les réussites et échecs de ce modèle simple fournissent de l’information
précieuse concernant les caractéristiques physiques du gaz qui entoure l’étoile,
entre autres sa composition chimique, sa température et sa densité. Le modèle de disque
excentrique met aussi en évidence le besoin de composantes supplémentaires, probablement
des anneaux circulaires, pour expliquer la présence d’absorption à décalage de
vitesse nul ainsi que celle de raies de Si hautement ionisé. Nous trouvons qu’une période
de précession de 4.6±0.3 ans peut reproduire avec succès la forme et le profil de vitesse
observé pour la majorité des époques d’observation d’avril 2015 à janvier 2018, bien
que des différences mineures à certains moments indiquent que la configuration géométrique
supposée n’est probablement pas encore optimale. Finalement, nous montrons que
notre modèle peut expliquer quantitativement le changement morphologique des zones
d’absorption durant les transits de l’objet en orbite autour de l’étoile. / WD 1145+017 is a metal polluted white dwarf with an actively disintegrating asteroid
orbiting around it. This system is the first to show the active decomposition phase of
the accretion process. The different observed data show a complex system composed of
many pieces of the rocky objets, a dust disk and a gaseous disk, all orbiting the polluted
white dwarf. We present an eccentric precessing gas disk model designed to study the
variable circumstellar absorption features detected for WD 1145+017. This model, inspired
by one recently proposed by Cauley et al., calculates explicitly the gas opacity for
any predetermined physical conditions in the disk, predicting the strength and shape of
all absorption features, from the UV to the optical, at any given phase of the precession
cycle. The successes and failures of this simple model provide valuable insight on the
physical characteristics of the gas surrounding the star, notably its composition, temperature
and density. This eccentric disk model also highlights the need for supplementary
components, most likely circular rings, in order to explain the presence of zero velocity
absorption as well as highly ionized Si lines. We find that a precession period of 4.6±0.3
yrs can successfully reproduce the shape of the velocity profile observed at most epochs
from April 2015 to January 2018, although minor discrepancies at certain times indicate
that the assumed geometric configuration may not be optimal yet. Finally, we show
that our model can quantitatively explain the change in morphology of the circumstellar
feature during transiting events.
|
128 |
Prédiction des éruptions solaires par assimilation de données avec les modèles d’avalanchesThibeault, Christian 08 1900 (has links)
Les éruptions solaires sont des tempêtes de rayonnement électromagnétique, de particules relativistes et parfois de masse coronale provoquées par la libération d’énergie magnétique provenant de la couronne solaire. Si ces tempêtes atteignent l'environnement terrestre, elles peuvent poser un danger à la santé des astronautes en hautes orbites et causer des perturbations importantes sur les systèmes GPS. Dans certains cas, elles peuvent même induire des dommages aux infrastructures technologiques, dont les réseaux électriques.
La prédiction des éruptions solaires est donc considérée comme un des plus importants défis de la météorologie spatiale. Par contre, à ce jour, aucune méthode présentée dans la littérature n’est capable de produire des prédictions fiables, ce qui met en évidence la nature complexe du déclenchement des éruptions solaires. Nous présentons donc dans ce mémoire une méthode alternative aux techniques statistiques habituelles, basée sur l'assimilation de données couplée avec des modèles rapides en automate cellulaire appelés modèles d'avalanche.
Les modèles d'avalanche sont une simplification drastique de la physique du déclenchement des éruptions solaires. Malgré leur simplicité, ils reproduisent assez bien les statistiques à long terme de la taille des éruptions. Nous présentons dans ce mémoire des analyses empiriques de la capacité prédictive de quatre modèles: le modèle de Lu et Hamilton (LH) (Lu & Hamilton, 1991, ApJ, 412, 841-852), deux modèles à forçage déterministes (D) (Strugarek & Charbonneau, 2014, SoPh, 289(8), 2993-3015) et finalement deux modèles maximisant l'énergie libérée, appelées modèles DMC, qui sont fortement inspirés du modèle présenté par Farhang et al. (2018, ApJ, 859(1), 41). Les modèles DMC ont été développés dans le cadre de cette maîtrise et donc un chapitre de ce mémoire est dédié à leur présentation et aux analyses plus détaillées de leurs caractéristiques. Nous montrons que pour les modèles D ainsi que les modèles DMC, une mémoire existe entre les évènements simulés de grandes tailles, malgré la forte stochasticité de chacun de ces modèles.
Nous présentons de plus dans ce mémoire un nouveau protocole de prédiction des éruptions solaires, utilisant l'assimilation de données couplée avec les modèles d'avalanches. Notre protocole se base sur une méthode de recuit simulé pour ajuster la condition initiale du modèle jusqu'à ce qu'elle reproduise de façon satisfaisante une série d'évènements observés. Une fois cette condition initiale optimisée produite, la simulation qui en résulte représente notre prédiction. Nous montrons dans ce mémoire le succès de notre protocole à bien assimiler une centaine d'observations synthétiques (produit par les modèles d'avalanche eux-mêmes). / Solar flares are sudden releases of electromagnetic radiation, relativistic particles and occasionally coronal mass, caused by the release of magnetic energy from the solar corona. They pose a danger to astronauts in high orbits and directly impact the Earth, including significant disturbances on GPS systems, and can even cause damage to technological infrastructures, including electrical networks. Predicting solar flares is therefore considered to be one of the most critical challenges in space weather. However, no method presented in the literature can produce reliable predictions, highlighting the complex nature of the triggering of solar flares. We, therefore, present in this thesis an alternative method to the usual statistical forecasting techniques. Our method is based on data assimilation coupled with computationally inexpensive cellular automaton models called avalanche models.
Avalanche models are a drastic simplification of the physics underlying the triggering of solar flares. Despite their simplicity, they reproduce reasonably well the long-term statistics of solar flares sizes. In this thesis, we present empirical analyses of the predictive capabilities of four models: the Lu and Hamilton (LH) model (Lu & Hamilton, 1991, ApJ, 412, 841-852), two deterministic-driven (D) models (Strugarek & Charbonneau, 2014, SoPh, 289(8), 2993-3015) and finally two models using the principle of minimum energy during magnetic reconnection, called DMC models, which are strongly inspired by the models presented by Farhang et al. (2018, ApJ, 859(1), 41). The DMC models were developed during this project; therefore, a chapter of this thesis is dedicated to their presentation and more detailed analyses of their characteristics. We show that for D and DMC models, a memory exists between large simulated events, despite the high stochasticity present within each of these models.
We finally present in this thesis a new protocol for predicting solar flares, using data assimilation coupled with avalanche models. Our protocol is based on a simulated annealing method to adjust the initial condition of the model until it satisfactorily reproduces a series of observed events. Once this optimal initial condition is found, the resulting simulation produces our prediction. In this thesis, we show our algorithm's success in assimilating hundreds of synthetic observations (produced by the avalanche models themselves).
|
129 |
Étude de l'influence de la perte de masse sur l'évolution d'étoiles de plusieurs typesVick, Mathieu 10 1900 (has links)
No description available.
|
130 |
Étude de l’influence de l’activité stellaire sur la spectroscopie de transit à basse résolution et des possibilités de mitigation par la haute résolutionGenest, Frédéric 11 1900 (has links)
La spectroscopie de transit est un outil puissant pour la caractérisation de l'atmosphère d'exoplanètes. Plusieurs phénomènes peuvent contaminer un spectre de transmission, dont l'hétérogénéité de la surface de l'étoile hôte due à l'activité stellaire. À basse résolution spectrale, la différence entre le cordon de transit et le reste de la surface y laisse des signatures qui pourraient être attribuées à tort à la planète. Les risques associés incluent des biais sur la mesure du rayon et des abondances atmosphériques de planètes.
Afin de trouver une solution à ce problème, cette étude consiste à modéliser en détail des surfaces stellaires et des spectres de transit à basse et à très haute résolution. On cherche d'une part à qualifier l'ampleur du problème à basse résolution et, d'autre part, à déterminer si la haute résolution permet d'isoler la contamination stellaire et ainsi résoudre le problème. La modélisation se concentre sur trois types d'étoiles, entre K hâtive et M tardive.
Les modèles confirment l'importance du problème et l'absence de solution évidente à basse résolution, principalement pour les étoiles M. À haute résolution, on parvient à séparer les signaux de la planète et de l'activité stellaire. Cela permet de briser l'ambiguïté à basse résolution, pourvu que la planète ait une variation de vitesse radiale suffisante durant le transit.
Ces résultats soulignent la valeur d'un suivi à haute résolution lorsque possible. Même avec le télescope James-Webb, il sera difficile d'avoir totalement confiance en les résultats de caractérisation d'atmosphères utilisant des données à basse résolution. / Transit spectroscopy is a powerful tool for the characterisation of exoplanet atmospheres. There exist multiple sources of contamination for transmission spectra, including stellar activity induced surface heterogeneities on the host star. At low spectral resolution, differences between the transit chord and the rest of the surface leave signatures in the spectra, which could then be wrongly associated with the planet. This can introduce biases in radius and atmospheric abundance measurements of exoplanets.
To solve this issue, this study consists in carefully modeling stellar surfaces and transit spectra at low and very high spectral resolution. We seek to, on one hand, understand the importance of the problem at low resolution, and, on the other hand, determine if high resolution allows us to isolate stellar contamination and thus solve this problem. Modeling is focused on three types of stars, from early K to late M.
Models confirm the importance of the issue and the absence of an obvious solution at low resolution, especially for M stars. At high resolution, we manage to effectively split the planet and stellar activity signals. This allows us to break the ambiguity from low resolution, provided the planet experiences a sufficient radial velocity variation during transit.
These results highlight the strong value of high resolution follow-ups when feasible. Even with the James-Webb space telescope, it will be difficult to fully trust the results of atmospheric abundance retrievals using low resolution data.
|
Page generated in 0.0177 seconds