41 |
Segmentation automatique de la fibrose pulmonaire sur images de tomodensitométrie en radio-oncologieFréchette, Nicolas 08 1900 (has links)
La fibrose pulmonaire est une maladie pulmonaire interstitielle caractérisée par une production irréversible de tissus conjonctifs. Le pronostic de la maladie est plus faible que celui de plusieurs cancers. Dans les dernières années, cette pathologie a été identifiée comme un risque de complication suite à des traitements de radiothérapie. Développer une toxicité post-radique peut compromettre les bénéfices de la radiothérapie, ce qui fait de la fibrose pulmonaire une contre-indication relative. Localiser manuellement la présence de fibrose sur des images de tomodensitométrie (CT) est un problème difficile pouvant nécessiter l’intervention de plusieurs experts pour un seul patient. L’objectif de ce projet est de segmenter automatiquement la fibrose pulmonaire sur des images CT. Des réseaux de neurones complètement convolutifs ont été développés et implémentés pour effectuer une assignation automatique de tissus pulmonaires. Sur une coupe axiale donnée en entrée, l’assignation est réalisée pour l’ensemble des voxels pulmonaires en une seule inférence. L’optimisation des paramètres a été réalisée dans des contextes d’apprentissage supervisé et semi-supervisé en minimisant des variantes de l’entropie croisée entre les prédictions et des annotations manuelles d’experts. Les données utilisées consistent en des images CT haute résolution ainsi que des délinéations réalisées par des radiologistes et des radio-oncologues. Les cartes de segmentation prédites ont été comparées par rapport à des segmentations manuelles afin de valider les tissus assignés par les réseaux convolutifs. Les résultats obtenus suggèrent que des applications en radio-oncologie sont envisageables, telles que le dépistage de la fibrose avant la planification de traitements et l’évaluation de la progression de la fibrose pendant et suivant les traitements de radiothérapie. / Pulmonary fibrosis is an interstitial lung disease characterized by an irreversible
production of scarring tissue. Pulmonary fibrosis has a particularly poor
prognosis, with a mean survival after diagnosis lower than many cancers. This
pathology was recently identified as a risk for complication following radiation
therapy treatments. Pulmonary toxicity can lead to severe conditions that
compromise the benefits provided by radiation therapy, making pulmonary
fibrosis a relative contraindication to treatments. Manual segmentation of
fibrosis on computed tomography (CT) images is a difficult task that can
involve many experts for a single patient.
The aim of this project is to perform automatic segmentation of pulmonary
fibrosis on CT images. Fully convolutional neural networks were developed and
implemented to automatically assign lung tissues. For an input CT slice, every
lung voxel is assigned a tissue in a single inference. Parameters optimization was
performed in a supervised and semi-supervised manner by minimizing variants
of the cross-entropy between the prediction and manual annotations produced
by experts. The dataset employed consists of high resolution CT scans and
delineations made by radiologists and radiation oncologists. Predicted
segmentation maps were compared with manual segmentations to validate the
tissues assigned by the convolutional networks. Results suggest that radiation
oncology applications could be developed. Possible applications include
pulmonary fibrosis screening prior to treatment planning and assessment of
fibrosis progression during and post-treatment.
|
42 |
Évaluation dosimétrique des images de synthèse CT obtenues par la tomodensitométrie à faisceau coniqueGuo, Alan 11 1900 (has links)
La tomodensitométrie à faisceau conique (CBCT) est répandue à travers les centres de cancérologie pour le positionnement du patient avant chaque traitement de radiothérapie. Ces images pourraient potentiellement être utilisées pour des tâches plus complexes. En radio-oncologie, les techniques de planification adaptative sont en développement et nécessitent l'utilisation des images de tomodensitométrie synthétiques (sCT). Alors, plusieurs groupes de recherche ont proposé différentes techniques pour générer des images sCT à partir des données CBCT.
L'objectif principale de ce projet est d'évaluer une nouvelle méthode d'apprentissage profond pour générer des images sCT de pelvis à partir des images CBCT. Onze patients ont été rétrospectivement étudiés. Chaque patient a été imagé en séquence par deux techniques d'imagerie volumétrique dans la même position, soit un scan au CBCT et un autre au CT sur rails (CTr). Afin de pouvoir utiliser les images synthétiques dans un contexte clinique, la qualité de l'image et l'impact dosimétrique entre les sCT et les CTr doivent être évalués. Les nombres CT des images sCT sont comparés à ceux des images CTr. Finalement, pour évaluer l'impact dosimétrique, les plans de traitement optimaux sont recalculés sur les images sCT et CTr. Les différences de dose sont évaluées à l'aide d'une analyse gamma et des histogrammes dose-volume.
L'évaluation quantitative montre qu'il y a des différences statistiquement significatives dans les os et les cavités d'air. Tandis que, les différences des tissus adipeux et mous ne sont pas statistiquement significatives. Les doses estimées dans les organes à risque et les PTV à partir des données des sCT sont surestimées comparativement à celles calculées à partir des données des CTr. Cependant, les erreurs de doses sont inférieures à 2% pour la plupart des cas étudiés. Ces erreurs de doses sont probablement causées par le manque de tissus dans la périphérie du patient et les erreurs des nombres CT. Bien que les différences de doses soient cliniquement acceptable, la méthode proposée devrait temporairement être limitée aux validations quotidiennes de plans de traitement pour des cas pelviens. / The cone-beam computed tomography (CBCT) is widely spread in cancer centers for positioning the patient before their radiotherapy treatment. These images could potentially be used for more complex tasks. In radio-oncology, adaptive planning technics are in development and require the use of synthetic CT (sCT) images. So, multiple research groups proposed different methods to generate sCT images from CBCT data.
The main purpose of this project is to assess a new deep-learning method to generate sCT images from CBCT images.
Eleven patients were retrospectively studied. Each patient was subsequently imaged by two volumetric imaging methods in the same position, one CBCT scan and the other from CT on rails (CTr). In order to clinically use the synthetic images, image quality and dosimetric impact between sCT and CTr must be evaluated. sCT images' CT values are compared to those in CTr images. Finally, to evaluate the dosimetric impact, optimal treatment plans are recalculated with sCT and CTr images. Dose differences are assessed by gamma analysis and dose-volume histograms.
The quantitative evaluation shows that differences are statistically different in bones and air cavities. As for adipose and soft tissues, differences were not statistically different. The estimated doses in organs-at-risk and PTVs from sCT data are overestimated compared to those from CTr data. However, dose errors are inferior to 2% in the majority of studied cases. These dose errors are most likely due to missing tissues on the outskirt of the patient and the errors of CT numbers. Although dose differences are clinically acceptable, the proposed method should temporarily be limited to daily validations of pelvic treatment plans.
|
43 |
Application de la scintillation liquide pour caractériser une source de curiethérapie par émetteurs-alphas diffusantWahl, Mathilde 08 1900 (has links)
Cancer is the leading cause of death in Canada. Many cancer treatments are using chemotherapy, surgery and radiotherapy. In radiotherapy, photons are the most used ionizing radiation, however alpha particles have higher radiobiological impact which increases the efficiency of patient treatment delivery. Alpha Tau Medical Ltd. (Tel Aviv, Israël) has developed a new brachytherapy method using radioactive seeds. The seeds called DaRT, for Diffusing alpha emitters Radiation Therapy, are composed of 224-Ra atoms which come from 228-Th generator. Currently, these seeds are characterized by an alpha-spectrometer and Geiger-Muller counter or well chamber for quality control. This project offers a new characterization of DaRT seeds using liquid scintillation. Liquid scintillation allows alpha and beta particles detection with the help of liquid cocktail and employing a scintillation counter. The characterization with liquid scintillation allows establishing and quantifying 228-Th trace contamination on the DaRT seeds. Also, it provides a method for seed quality control before they are used on patients by estimating their activity from spectrums established with the liquid scintillation counter. The spectrums obtained also give the possibility of dose estimation using either mass or mass stopping power in water. The results of the dose are compared to expected values from the literature and to simulations. / Le cancer est la première cause de mortalité au Canada. De nombreuses techniques de traitement du cancer existent utilisant la chimiothérapie, la chirurgie et la radiothérapie. En radiothérapie, les photons sont les rayonnements ionisants les plus fréquemment utilisés, cependant les particules alpha présentent des propriétés radiobiologiques intéressantes augmentant l'efficacité des résultats du traitement prodigué au patient. Une nouvelle technique de curiethérapie ayant recourt à des grains a été développée par Alpha Tau Medical Ltd.(Tel Aviv, Israël). Pour ce faire les grains appelés DaRT, pour Radiothérapie par émetteurs-alpha diffusant, sont constitués d'atomes 224-Ra issu d'un processus de fabrication à l'aide d'un générateur de 228-Th. Ces grains sont actuellement caractérisés par spectromètre-alpha et compteur Geiger-Muller ou chambre à puit dans le cas du contrôle de qualité. Ce projet vise à proposer une nouvelle caractérisation des grains DaRT en recourant à la scintillation liquide. La scintillation liquide permet la détection des particules alpha et beta à l'aide de liquide scintillant et d'un compteur de scintillation. La caractérisation des grains avec la scintillation liquide permet d'établir et de quantifier la présence de trace de contamination de 228-Th. Cette technique de mesure de la radioactivité donne aussi la possibilité de réaliser le contrôle de qualité des grains avant son utilisation sur les patients en évaluant l'activité de ces derniers à partir des spectres obtenus par le compteur de scintillation liquide. Les spectres obtenus offrent la réalisation d'une estimation de la dose soit par la masse soit par le pouvoir d'arrêt massique des alpha dans l'eau. Les résultats de la dose sont comparés à des valeurs attendues de la littérature et de simulation.
|
44 |
Application de la méthode Monte Carlo à la modélisation d’une source de curiethérapie par diffusion d’émetteurs alphaMondor, Julien 12 1900 (has links)
La curiethérapie par diffusion d’émetteurs alpha (DaRT) est un nouveau type de grain interstitiel dont le potentiel thérapeutique pour les tumeurs solides est élevé en raison de l’utilisation de particules alpha. Cette modalité se distingue de la curiethérapie conventionnelle par une contamination des tissus à un niveau thérapeutique. Les radionucléides filles pénètrent la tumeur grâce à l’énergie de recul acquise lors de l’émission d’une particule alpha, puis ils se dispersent par diffusion dans les tissus avoisinants créant un nuage d’émetteurs alpha. Présentement, le \(^{224}\)Ra est la source radioactive utilisée par la modalité car la synergie de ses descendants de courte demi-vie permettent de produire une zone où la mort cellulaire est élevée. De plus, sa longue demie-vie permet de produire des sources thérapeutiques de faible activité. Le modèle de planification dosimétrique Diffusion-Leakage ne permet pas de déterminer la dose livrée à une zone qui seraient étanche aux radionucléides diffusants. Les particules possédant une longue portée, comme les particules beta et gamma, ne sont pas évaluées par le modèle. Pourtant, ces particules secondaires sont les seules qui déposent de l’énergie dans les zones non-traitées par les particules alpha. Le projet cadre est de simuler la distribution de la dose livrée par ces particules à l’aide de la méthode Monte Carlo. Deux distributions sont recherchées. Une première est la dose associée aux descendants du \(^{224}\)Ra qui se sont dispersés autour du grain et la deuxième est associée au \(^{224}\)Ra et à ses descendants distribués quelques nanomètres sous la surface du grain. Ce mémoire présente une méthode permettant de modéliser la distribution interne de la source de \(^{224}\)Ra sous la surface d’un grain DaRT. Des mesures de spectrométrie alpha ont permis de tester le diagramme de flux de travail et de confirmer la faisabilité de l’extraction de la distribution interne pour trois émetteurs alpha. Les distributions permettront d’évaluer la dose provenant exclusivement du grain en plus d’aider à concevoir des simulations du taux de désorption par recul atomique. Ce travail pourrait permettre d’aider à la conception de nouveaux grains et à l’évaluation de la dose beta et gamma entourant un grain DaRT au \(^{224}\)Ra. / Diffusion alpha-emitter Radiation Therapy (DaRT) is a new type of interstitial brachytherapy seed with high therapeutic potential for solid tumors due to the use of alpha particles. This modality differs from conventional brachytherapy by contaminating tissues to a therapeutic level. The daughters penetrate the tumor using the recoil energy acquired when an alpha particle is emitted and they then scatter by diffusion into the surrounding tissue, creating a cloud of alpha emitters. Currently, \(^{224}\)Ra is the radioactive source used by the modality because the synergy of its short half-life progeny allow to produce a zone where cell death is significant. In addition, its long half-life allows the production of therapeutic sources of low activity. The dosimetric planning model Diffusion-Leakage does not allow the determination of the dose delivered to an area that would be impenetrable by diffusing radionuclides. Particles with a long range, such as beta and gamma particles, are not evaluated by the model. However, these secondary particles are the only ones that deposit energy in areas not treated by alpha particles. The framework project is to simulate the dose distribution delivered by these particles using the Monte Carlo method. Two distributions are pursued. The first is the dose associated with the \(^{224}\)Ra progeny that are dispersed around the seed and the second is associated with radium and its progeny distributed a few nanometers below the surface of the seed. This thesis presents a method enabling the modelisation of the internal distribution of the \(^{224}\)Ra source below the surface of a DaRT seed. Alpha spectrometry measurements were used to test the workflow diagram and confirm the feasibility of extracting the internal distribution for three alpha emitters. The distributions will enable an assessment of the dose coming exclusively from the seed, in addition to helping in designing simulations of the desorption rate by atomic recoil. This work could assist in the design of new seeds and in the evaluation of the beta and gamma dose surrounding a \(^{224}\)Ra DaRT seed.
|
45 |
Implantation et validation d’un modèle Monte Carlo du Cyberknife dans un outil de calcul de dose cliniqueZerouali Boukhal, Karim 12 1900 (has links)
Le Cyberknife (Accuray, Sunnyvale, CA) est un appareil de radiochirurgie stéréotaxique sans cadre. Il a été développé pour administrer de fortes doses dans des volumes restreints. Aussi, pour obtenir une conformation optimale de traitement, des champs circulaires de petites dimensions sont utilisés (\phi
= 0,5 à 6 cm). L'étude dosimétrique de ces petits champs doit être menée selon de nouveaux standards puisque ceux-ci échappent aux définitions du TG-51. L'objectif de ce projet est d'implanter une plateforme de calcul de dose de type Monte Carlo pour le CyberKnife en clinique.
Il s'articule autour de deux réalisations principales. Tout d'abord, une caractérisation dosimétrique du modèle Monte Carlo de l'accélérateur linéaire du CyberKnife a été menée à travers des simulations Monte Carlo générées par le moteur de EGSnrc. Cette étude est basée sur la caractérisation de la réponse d'un détecteur à un champ de type CK à partir de simulations EGS_chamber. Cette approche permet de prendre en compte l'impact du détecteur sur les mesures expérimentales. Cet aspect est d'autant plus important que le modèle Monte Carlo de l'accélérateur est validé à partir de mesures expérimentales. Les résultats obtenus montrent une bonne concordance, <1% ou 1 mm, entre les mesures expérimentales et les données de simulations pour les grands champs. Pour les champs de diamètre < 12,5 mm, le modèle est moins exact et une correction est appliquée pour atteindre une différence de <1% ou 1 mm.
Deuxièmement, ce modèle validé du CK a été implanté dans un cadre de calcul Monte Carlo complet. Une plateforme de calcul dédiée aux calculs Monte Carlo, WebTPS, a été adaptée aux calculs de dose CK. Cette plateforme reçoit les données relatives au plan de traitement et lance des calcul EGSnrc sur un superordinateur. Cette approche tend à réduire les approximations lors de l'évaluation dosimétrique de plans de traitements cliniques. Une incertitude inférieure à 1% peut être atteinte en deux heures de calcul.
Ce projet a donc pour objectif de développer une référence clinique pour le calcul de dose dans le cadre de la radiochirurgie stéréotaxique. L'outil WebTPS pourrait être particulièrement utile en clinique, l'algorithme de calcul de dose du CK étant limité dans plusieurs situations de traitement. / Purpose: The scope of this study is to implement a clinical Monte Carlo dose calculation system based on the EGSnrc engine. This web-based tool will be mostly used to evaluate clinical treatment plans in highly heterogeneous phantoms.
Methods: The Monte Carlo calculation tool is based on the DOSXYZnrc user code. The platform automatically converts CyberKnife clinical plan to the user code input files. Phantoms can be created from HU to ED curves or by manually assigning material using medical contours. Parallel computation is made on a Compute Canada high-performance cluster to reduce simulation time. A Monte Carlo CyberKnife model is built on BEAMnrc user code using the manufacturer specifications. Simulated and experimental data is compared to estimate the electron beam parameters. The beam energy estimation is based on percent depth dose (PDD) comparison while the full width at half max (FWHM) is validated by output factor (OF) and off-axis ratio (OAR). An EGS_chamber model of the PTW60012 diode is used in the OF calculation. A set of phase-spaces is generated from the optimal model and for each collimator to calculate dose contribution from each incident beam.
Results: The linac model optimisation yielded a 0.5% PDD agreement between experimental and simulation data, and a 0.5% or 1 mm for OAR. DOSxyz simulation of full treatment plan, based on the preliminary CyberKnife model, were achieved. Total Monte Carlo dose calculation have been achieved for heterogeneous phantoms. Uncertainty under 1% can be achieved for less than 2 hour of computing time. However, computing time estimation is nontrivial due to its dependence on cluster availability.
Conclusion: This work aims to develop a suitable tool for reference plan dose calculation. This web-based tool would be used in several clinical and research applications where the CyberKnife embedded ray-tracing algorithm would show significant limitations. Because it is destined to a clinical use, the whole dose calculation system will be rigorously validated. / Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada.
|
46 |
Implantation et validation d’un modèle Monte Carlo du Cyberknife dans un outil de calcul de dose cliniqueZerouali Boukhal, Karim 12 1900 (has links)
Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada. / Le Cyberknife (Accuray, Sunnyvale, CA) est un appareil de radiochirurgie stéréotaxique sans cadre. Il a été développé pour administrer de fortes doses dans des volumes restreints. Aussi, pour obtenir une conformation optimale de traitement, des champs circulaires de petites dimensions sont utilisés (\phi
= 0,5 à 6 cm). L'étude dosimétrique de ces petits champs doit être menée selon de nouveaux standards puisque ceux-ci échappent aux définitions du TG-51. L'objectif de ce projet est d'implanter une plateforme de calcul de dose de type Monte Carlo pour le CyberKnife en clinique.
Il s'articule autour de deux réalisations principales. Tout d'abord, une caractérisation dosimétrique du modèle Monte Carlo de l'accélérateur linéaire du CyberKnife a été menée à travers des simulations Monte Carlo générées par le moteur de EGSnrc. Cette étude est basée sur la caractérisation de la réponse d'un détecteur à un champ de type CK à partir de simulations EGS_chamber. Cette approche permet de prendre en compte l'impact du détecteur sur les mesures expérimentales. Cet aspect est d'autant plus important que le modèle Monte Carlo de l'accélérateur est validé à partir de mesures expérimentales. Les résultats obtenus montrent une bonne concordance, <1% ou 1 mm, entre les mesures expérimentales et les données de simulations pour les grands champs. Pour les champs de diamètre < 12,5 mm, le modèle est moins exact et une correction est appliquée pour atteindre une différence de <1% ou 1 mm.
Deuxièmement, ce modèle validé du CK a été implanté dans un cadre de calcul Monte Carlo complet. Une plateforme de calcul dédiée aux calculs Monte Carlo, WebTPS, a été adaptée aux calculs de dose CK. Cette plateforme reçoit les données relatives au plan de traitement et lance des calcul EGSnrc sur un superordinateur. Cette approche tend à réduire les approximations lors de l'évaluation dosimétrique de plans de traitements cliniques. Une incertitude inférieure à 1% peut être atteinte en deux heures de calcul.
Ce projet a donc pour objectif de développer une référence clinique pour le calcul de dose dans le cadre de la radiochirurgie stéréotaxique. L'outil WebTPS pourrait être particulièrement utile en clinique, l'algorithme de calcul de dose du CK étant limité dans plusieurs situations de traitement. / Purpose: The scope of this study is to implement a clinical Monte Carlo dose calculation system based on the EGSnrc engine. This web-based tool will be mostly used to evaluate clinical treatment plans in highly heterogeneous phantoms.
Methods: The Monte Carlo calculation tool is based on the DOSXYZnrc user code. The platform automatically converts CyberKnife clinical plan to the user code input files. Phantoms can be created from HU to ED curves or by manually assigning material using medical contours. Parallel computation is made on a Compute Canada high-performance cluster to reduce simulation time. A Monte Carlo CyberKnife model is built on BEAMnrc user code using the manufacturer specifications. Simulated and experimental data is compared to estimate the electron beam parameters. The beam energy estimation is based on percent depth dose (PDD) comparison while the full width at half max (FWHM) is validated by output factor (OF) and off-axis ratio (OAR). An EGS_chamber model of the PTW60012 diode is used in the OF calculation. A set of phase-spaces is generated from the optimal model and for each collimator to calculate dose contribution from each incident beam.
Results: The linac model optimisation yielded a 0.5% PDD agreement between experimental and simulation data, and a 0.5% or 1 mm for OAR. DOSxyz simulation of full treatment plan, based on the preliminary CyberKnife model, were achieved. Total Monte Carlo dose calculation have been achieved for heterogeneous phantoms. Uncertainty under 1% can be achieved for less than 2 hour of computing time. However, computing time estimation is nontrivial due to its dependence on cluster availability.
Conclusion: This work aims to develop a suitable tool for reference plan dose calculation. This web-based tool would be used in several clinical and research applications where the CyberKnife embedded ray-tracing algorithm would show significant limitations. Because it is destined to a clinical use, the whole dose calculation system will be rigorously validated.
|
47 |
Planification de traitements de curiethérapie du sein à l’aide de l’imagerie par résonance magnétiqueTruchon, Dany 12 1900 (has links)
Ce mémoire présente l’étude de la faisabilité de la planification de traitements pour
la curiethérapie interstitielle du sein en utilisant l’imagerie par résonance magnétique
(IRM) seule au lieu de l’imagerie par tomodensitométrie (CT). L'imagerie CT étant la référence, la mesure des différences observables sur la distribution de doses provenant des deux types d’imagerie a été effectuée. Des fantômes de seins ont été fabriqués et utilisés, ainsi que l’imagerie de patients. La taille des fantômes
en fonction du positionnement dans l’appareil d’IRM et la longueur reconstruite des cathéters ont été analysées. Les différences dans les distributions de doses de fantômes et de patients ont été calculées en s’assurant que la reconstruction des cathéters provenant des images CT et IRM est la seule variable. La différence dans les critères de doses à respecter est plus grande lorsque la taille du fantôme et/ou un déplacement latéral dans l’IRM sont plus grands. La longueur reconstruite des cathéters est comparable entre les deux techniques d’imagerie. Pour le petit fantôme des différences <2% ont été observées pour tous les critères de dose. Pour le grand fantôme et pour les patients, une valeur maximale de 5% est observée pour les critères sur la cible, mais peut atteindre 19% pour le critère Externe V150%/V100% pour le grand fantôme et 33% pour les patients. Par contre, le seuil clinique de ce critére est toujours respecté. Ceci nous indique que pour la plupart des patients, la zone à traiter serait bien couverte en utilisant les images IRM uniquement pour planifier. / This dissertation presents the study of the feasibility of planning for interstitial breast
brachytherapy treatments using only magnetic resonance imaging (MRI) instead of computed tomography (CT) imaging. CT imaging being the reference, the measurement of observable differences on dose distributions from the two types of imaging has been done. Breast phantoms has been fabricated and used, as imaging of patients. Size of the phantoms according to the positioning inside the MRI device and catheters reconstructed length has been analysed. Differences in dose distributions of phantoms and patients have been calculated by ensuring that catheters reconstruction from CT and MRI images is the only variable. The difference in respecting the dose’s criteria is bigger when the size and/or the lateral shift into the MRI are bigger. The catheters’ reconstructed length is similar between the two imaging techniques. For the small phantom, differences <2% has been observed for all dose criteria. For the large phantom and for patients, a maximum value of 5% is observed for targets criteria, but can reach 19% for External V150/V100 criterion for the large phantom and 33% for patients. However, clinical threshold for this criterion is still respected. This tells us that for most patients, the treatment region would be covered by using MRI images only for planning.
|
48 |
Radiothérapie asservie à la respiration en combinaison avec l'utilisation d'un faisceau sans filtre égalisateurPéloquin, Simon 01 1900 (has links)
La radiothérapie stéréotaxique corporelle (SBRT) est une technique couramment employée
pour le traitement de tumeurs aux poumons lorsque la chirurgie n’est pas possible
ou refusée par le patient. Une complication de l’utilisation de cette méthode provient du
mouvement de la tumeur causé par la respiration. Dans ce contexte, la radiothérapie asservie
à la respiration (RGRT) peut être bénéfique. Toutefois, la RGRT augmente le temps
de traitement en raison de la plus petite proportion de temps pour laquelle le faisceau est
actif. En utilisant un faisceau de photons sans filtre égalisateur (FFF), ce problème peut
être compensé par le débit de dose plus élevé d’un faisceau FFF.
Ce mémoire traite de la faisabilité d’employer la technique de RGRT en combinaison
avec l’utilisation un faisceau FFF sur un accélérateur Synergy S (Elekta, Stockholm,
Suède) avec une ceinture pneumatique, le Bellows Belt (Philips, Amsterdam, Pays-Bas),
comme dispositif de suivi du signal respiratoire. Un Synergy S a été modifié afin de pouvoir
livrer un faisceau 6 MV FFF. Des mesures de profils de dose et de rendements en
profondeur ont été acquises en cuve à eau pour différentes tailles de champs. Ces mesures
ont été utilisées pour créer un modèle du faisceau 6 MV FFF dans le système de planification
de traitement Pinnacle3 de Philips. Les mesures ont été comparées au modèle à
l’aide de l’analyse gamma avec un critère de 2%, 2 mm. Par la suite, cinq plans SBRT
avec thérapie en arc par modulation volumétrique (VMAT) ont été créés avec le modèle
6 MV du Synergy S, avec et sans filtre. Une comparaison des paramètres dosimétriques
a été réalisée entre les plans avec et sans filtre pour évaluer la qualité des plans FFF. Les
résultats révèlent qu’il est possible de créer des plans SBRT VMAT avec le faisceau 6 MV
FFF du Synergy S qui sont cliniquement acceptables (les crières du Radiation Therapy
Oncology Group 0618 sont respectés).
Aussi, une interface physique de RGRT a été mise au point pour remplir deux fonctions
: lire le signal numérique de la ceinture pneumatique Bellows Belt et envoyer une
commande d’irradiation binaire au linac. L’activation/désactivation du faisceau du linac se
fait par l’entremise d’un relais électromécanique. L’interface comprend un circuit électronique
imprimé fait maison qui fonctionne en tandem avec un Raspberry Pi. Un logiciel
de RGRT a été développé pour opérer sur le Raspberry Pi. Celui-ci affiche le signal numérique
du Bellows Belt et donne l’option de choisir les limites supérieure et inférieure
de la fenêtre d’irradiation, de sorte que lorsque le signal de la ceinture se trouve entre
ces limites, le faisceau est actif, et inversement lorsque le signal est hors de ces limites.
Le logiciel envoie donc une commande d’irradiation au linac de manière automatique en
fonction de l’amplitude du signal respiratoire.
Finalement, la comparaison entre la livraison d’un traitement standard sans RGRT avec
filtre par rapport à un autre plan standard sans RGRT sans filtre démontre que le temps
de traitement en mode FFF est réduit en moyenne de 54.1% pour un arc. De la même
manière, la comparaison entre la livraison d’un traitement standard sans RGRT avec filtre
par rapport à un plan de RGRT (fenêtre d’irradiation de 75%) sans filtre montre que le
temps de traitement de RGRT en mode FFF est réduit en moyenne de 27.3% par arc.
Toutefois, il n’a pas été possible de livrer des traitements de RGRT avec une fenêtre de
moins de 75%. Le linac ne supporte pas une fréquence d’arrêts élevée. / Stereotactic body radiation therapy (SBRT) is a technique commonly employed for
treatment of lung tumors when surgery is not possible or not accepted by the patient. One
complication arising from the use of this method comes from the movement of the tumor
during respiration. In this context, respiratory gated radiation therapy (RGRT) can be
beneficial. By using a flattening filter free (FFF) photon beam, the increase in treatment
time caused by a reduced beam-on time of respiratory gated methods can be compensated
by the inherent increased dose rate of FFF beams.
This thesis reports on the feasibility of using the RGRT technique in combination with
the use of a FFF photon beam on a Synergy S (Elekta, Stockholm, Sweden) linear accelerator
with a pneumatic belt, the Bellows Belt (Philips, Amsterdam, Netherlands), to
monitor the patient’s respiratory signal. A Synergy S has been modified to deliver a 6 MV
FFF photon beam. Dose profile and percentage depth dose measurements were taken in
a water tank for different field sizes. Those measurements were used to create a model
for the 6 MV FFF beam with the Pinnacle3 treatment planning system from Philips. Measurements
were compared with the model using gamma index analysis with a 2%, 2 mm
criterion. Then, five SBRT plans with volumetric modulated arc therapy (VMAT) were
created in Pinnacle3 with the 6 MV Synergy S model, with and without a flattening filter.
A comparison of dosimetric parameters was made between plans with and without a flattening
filter to estimate the quality of the FFF plans. Results reveal that it is possible to
create SBRT VMAT plans with the 6 MV FFF model of the Synergy S that are clinically
acceptable (criteria of the Radiation Therapy Oncology Group 0618 were respected).
Also, a RGRT hardware interface was created to fulfill two main functions: read the
digital signal from the Bellows Belt pneumatic belt and send an on/off irradiation command
to the linac. The activation/deactivation of the beam is regulated by an electromechanical
relay. The interface is composed of a homemade printed circuit board that functions with a Raspberry Pi. A RGRT software was also developed to operate on the Raspberry
Pi. This software shows the Bellows Belt’s digital signal and gives the option of
choosing the upper and lower limits of the gating window. When the respiratory signal
of the belt is between those limits, the beam is active, and vice versa when the signal is
outside those limits. The software thus effectively sends an on/off irradiation command
automatically to the linac depending on the amplitude of the respiratory signal.
Finally, a comparison between the delivery of a standard plan without RGRT, with
filter, and another standard plan without RGRT, without filter, shows that the treatment
time for plans using the FFF beam is reduced by 54.1% on average for one arc. Similarly,
a comparison between the delivery of a standard plan without RGRT, with filter, and a
gated plan (gating window of 75%), without filter, shows that the treatment time for the
gated treatments is reduced by 27.3% on average for one arc. However, it was not possible
to deliver RGRT treatments with a gating window smaller than 75%. The linac does not
support such a high frequency of beam halting.
|
49 |
Design and Evaluation of Dual-ended Detectors for PET MammographyCuddy, Sarah Grace 06 December 2011 (has links)
Current positron emission mammography (PEM) depth of interaction (DOI) enabling detectors have low scintillator to photodetector encoding ratios, RE causing high system complexity and cost. The modularized dual-ended readout block (DERB) detector combines the Anger logic block detector with dual-ended readout to increase RE while measuring DOI. To investigate the trade-off between RE and spatial resolution, scalable
DERB detectors with varying RE and light guide thickness were modelled with Monte-
Carlo. Simulation showed RE can increase up to six-fold compared to the dual-ended readout design without significantly degrading spatial resolution. Experimental characterization of a RE = 9 : 8 DERB detector was found to achieve super-resolution <0.5 mm for resolving crystal indices, DOI resolution of ~5 mm FWHM, and mean energy resolution of 20% without recovering photons lost to neighbouring detector modules. The model was validated by agreement of simulation results adjusted for detector quantum efficiency with experimental results.
|
50 |
Design and Evaluation of Dual-ended Detectors for PET MammographyCuddy, Sarah Grace 06 December 2011 (has links)
Current positron emission mammography (PEM) depth of interaction (DOI) enabling detectors have low scintillator to photodetector encoding ratios, RE causing high system complexity and cost. The modularized dual-ended readout block (DERB) detector combines the Anger logic block detector with dual-ended readout to increase RE while measuring DOI. To investigate the trade-off between RE and spatial resolution, scalable
DERB detectors with varying RE and light guide thickness were modelled with Monte-
Carlo. Simulation showed RE can increase up to six-fold compared to the dual-ended readout design without significantly degrading spatial resolution. Experimental characterization of a RE = 9 : 8 DERB detector was found to achieve super-resolution <0.5 mm for resolving crystal indices, DOI resolution of ~5 mm FWHM, and mean energy resolution of 20% without recovering photons lost to neighbouring detector modules. The model was validated by agreement of simulation results adjusted for detector quantum efficiency with experimental results.
|
Page generated in 0.0232 seconds