1 |
Zwei-Photonen-Photoemission an massenselektierten Silber-Clustern aufBusolt, Ulrike, Bochum, Deutschland 08 September 2000 (has links)
No description available.
|
2 |
Electron dynamics in nanomaterials for photovoltaic applications by time-resolved two-photon photoemissionTritsch, John Russell 23 October 2013 (has links)
The impetus of unsustainable consumption coupled with major environmental concerns has renewed our society's investment in new energy production methods. Solar energy is the poster child of clean, renewable energy. Its favorable environmental attributes have greatly enhanced demand resulting in a spur of development and innovation. Photovoltaics, which convert light directly into usable electrical energy, have the potential to transform future energy production. The benefit of direct conversion is nearly maintenance free operation enabling deployment directly within urban centers. The greatest challenge for photovoltaics is competing economically with current energy production methods. Lowering the cost of photovoltaics, specifically through increasing the conversion efficiency of the active absorbing layer, may enable the invisible hand to bypass bureaucracy. To accomplish the ultimate goal of increased efficiency and lowered cost, it is essential to develop new material systems that provide enhanced output or lowered cost with respect to current technologies. However, new materials require new understanding of the physical principles governing device operation. It is my hope that elucidating the dynamics and charge transfer mechanisms in novel photovoltaic material systems will lead to enhanced design principles and improved material selection. Presented is the investigation of electron dynamics in two materials systems that show great promise as active absorbers for photovoltaic applications: inorganic semiconductor quantum dots and organic semiconductors. Common to both materials is the strong Coulomb interaction due to quantum confinement in the former and the low dielectric constant in the latter. The perceived enhancement in Coulomb interaction in quantum dots is believed to result in efficient multiexciton generation (MEG), while discretization of electronic states is proposed to slow hot carrier cooling. Time-resolved two-photon photoemission (TR2PPE) is utilized to directly map out the hot electron cooling and multiplication dynamics in PbSe quantum dots. Hot electron cooling is found to proceed on ultrafast time scales (< 2ps) and carrier multiplication proceeds through an inefficient bulk-like interband scattering. In organic semiconductors, the strong Coulomb interaction leads to bound electron-hole pairs called excitons. TR2PPE is used to monitor the separation of excitons at the model CuPc/C₆₀ interface. Exciton dissociation is determined to proceed through "hot" charge transfer states that set a fundamental time limit on charge separation. TR2PPE is used to investigate charge and energy transfer from organic semiconductors undergoing singlet fission, an analog of multiple exciton generation. The dynamic competition between one and two-electron transfer is determined for the tetracene/C₆₀ and tetracene/CuPc interfaces. These findings allow for the formulation of design principles for the successful harvesting of hot or multiple carriers for solar energy conversion. / text
|
3 |
Elementary processes at surfaces and interfaces of electrochemically relevant systemsDemling, Angelika Verena 07 September 2023 (has links)
In elektrochemischen Zellen vollziehen sich die Haupteaktionen in der Regel an Oberflächen von Elektroden und Katalysatoren und deren Elektrolytgrenzflächen, wodurch Änderungen dort die Effizienz der Zelle stark beeinflussen können. Diese Arbeit behandelt elementare Prozesse an solchen Ober- und Grenzflächen, die die Bandstruktur und damit möglicherweise auch die Reaktivität des Systems verändern. Mit Zwei-Photonen-Photoelektronenspektroskopie (2PPE) untersuche ich solche Prozesse in drei Modellsystemen für Elektrodenoberflächen beziehungsweise Elektrolyt/Elektroden-Grenzflächen:
ZnO wird als Material für die photoelektrochemische Wasserspaltung diskutiert. In zeitaufgelösten 2PPE-Spektren beobachte ich Oszillationen des Dipols der (10-10)-Oberfläche, die bislang unbekannten kohärenten Oberflächenphononen zuzuordnen sind. Ich diskutiere ihre Erzeugung und entwickle eine Methode, um ultraschnelle Änderungen des Oberflächendipols anhand der Intensität des Sekundärelektronenschwanzes eines 2PPE Spektrums zu quantifizieren.
An der D2O/ZnO(10-10)-Grenzfläche untersuche ich mehrere Effekte der Wasseradsorption, wie Veränderungen der Austrittsarbeit und der kohärenten Oberflächenphononen. Anders als in früheren Studien stelle ich keine Oberflächenmetallisierung durch Wasseradsorption fest. Auch gibt es keinen klaren Hinweis auf Elektronensolvatisierung, wie sie an Wasser/Metall-Grenzflächen zu beobachten ist.
An der DMSO/Cu(111)-Grenzfläche, einem Modellsystem der Elektrolyt/Kathoden-Grenzfläche in Metall-Luft-Batterien, bestimme ich die elementaren Schritte der Sauerstoffreduktion. Im DMSO werden kleine Polaronen ultraschnell gebildet und zum Teil in Oberflächendefekten eingefangen. Die Lebensdauer dieser gefangenen Elektronen kann mehrere Sekunden betragen. Sie reagieren mit co-adsorbiertem O2, nachdem es in das DMSO diffundiert ist, zu O2-. Die Modellierung der Diffusion liefert eine Abschätzung des Elektroden-Reaktanten-Abstandes für Elektronentransfer in DMSO. / In electrochemical cells, the main reactions usually proceed at the surfaces of electrodes and catalysts and their interfaces with the electrolyte. Hence, changes there can have a huge impact on the efficiency of the cell. This thesis concerns elementary processes at such surfaces and interfaces, which affect the electronic band structure and, thus, potentially the reactivity of the surface. Using two-photon photoelectron spectroscopy (2PPE), I investigate such processes in three model systems for electrode surfaces and electrolyte/electrode interfaces:
ZnO is discussed as material for photoelectrochemical water splitting. In time-resolved 2PPE spectra, I observe oscillations of the (10-10) surface dipole, which are assigned to previously unknown coherent surface phonons. I discuss their generation and develop a method to quantify ultrafast surface dipole changes from the intensity of the secondary electron tail of a 2PPE spectrum.
At the D2O/ZnO(10-10) interface, I examine several effects of water adsorption, such as changes of the work function and the coherent surface phonons. Unlike in a previous study, I do not observe surface metallization upon water adsorption. Moreover, there is no clear indication of electron solvation as found at water/metal interfaces.
At the DMSO/Cu(111) interface, a model system for the electrolyte/cathode interface in metal-air batteries, I determine the elementary steps of superoxide formation. In the DMSO, small polarons are formed and partly trapped in surface defects on an ultrafast time scale. These trapped electrons can persist for several seconds and react with co-adsorbed O2 to from O2-. Modelling the diffusion yields estimates for the electrode-reactant distance for electron transfer in DMSO.
|
Page generated in 0.0122 seconds