• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 46
  • 35
  • 20
  • 10
  • 9
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 417
  • 417
  • 86
  • 50
  • 47
  • 40
  • 37
  • 35
  • 30
  • 29
  • 27
  • 26
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard

Linvill, Eric January 2015 (has links)
Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated. In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C. In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process. In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials. / Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser. I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C. I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas. I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial. / <p>QC 20150907</p>
82

Système de localisation indoor pour l'aide à la télésurveillance / Indoor localization system for telemonitoring

Kumar, Rupesch 17 December 2014 (has links)
Dans le cadre d'un suivi régulier de patients âgés pouvant souffrir de maladie d'Alzheimer, de nombreuses applications, dont leur localisation, s'avèrent utiles. Un système de localisation compact dédié à un environnement en intérieure est nécessaire. Cette thèse est dédiée à la réalisation d'un système de localisation pouvant répondre à cette attente. Le système développé (Indoor Localisation System, ILS) permet la localisation en trois dimensions d'un badge actif (Active Tag, AT) relativement à une ancre unique (Localisation Base Station, LBS). Le système utilise le principe de radar monopulse multistatique FMCW(Frequency Modulation Continuos Wave) et exploite la bande de fréquence Européenne ULB (6-8.5 GHz). La méthode employée pour l'ILS est une méthode goniométrique se basant sur la mesure conjointe de la différence de fréquence d'arrivée (FDoA) et la différence de phase d'arrivée (PDoA) pour l'estimation de la distance radiale et des angles de direction (azimut et élévation) de l'AT relativement au plan formé par l'ILS. Afin de valider ce système, un prototype d'ILS a été réalisé à Télécom ParisTech.L'objectif de cette thèse est d'obtenir un système de localisation compact permettant de localiser un badge actif avec une précision submétrique dédié pour les environnements en intérieurs exposés aux problèmes de multi-trajets. / Regular and accurate position monitoring of elderly suffering from dementia related problems (Alzheimer) may be required. To assist their monitoring a compact and a less complex indoor localization system is compulsary. This thesis is dedicated to design a Line-of-Sight (LoS) system to allow the indoor localization. The thesis aims to develop an Indoor Localization System (ILS) for three-dimension position estimates with respect to single Localization Base Station as an anchor. The designed ILS uses an Active-Tag (AT) as remote targel. The system uses the monopulse multistatic FMCW radar principle and covers the European UWB (6-8.5 GHz) frequency band. The designed ILS is based on the frequency-difference of arrival (FDoA) and the phase-difference-of-arrival (POoA) techniques for the radial-distance and the angles (azimuth and elevation) estimates. In order to validate this system, a prototype of the ILS is designed at Telecom ParisTech, France.The objective of the designed ILS is to have a localization system with an accuracy in few centimeters in Line-of-Sight condition. The system is designed to need a single anchor, and simultaneously addressing the indoor challenges such as multipaths, strong signal attenuations, reflections, etc.
83

Yes Please

Braun, Justin Farris 29 September 2009 (has links)
No description available.
84

Three-dimensional numerical modelling of sediment transport processes in non-stratified estuarine and coastal waters

Cahyono, M. January 1993 (has links)
Details are given herein of the development, refinement and application of a higher-order accurate 3-D finite difference model for non-cohesive suspended sediment transport processes, in non-stratified estuarine and coastal waters. The velocity fields are computed using a 2-D horizontal depth-integrated model, in combination with either an assumed logarithmic velocity profile or a velocity profile obtained from field data. Also, for convenience in handling variable bed topographies and for better vertical resolution, a δ-stretching co-ordinate system has been used. In order to gain insight into the relative merits of various numerical schemes for modelling the convection of high concentration gradients, in terms of both accuracy and efficiency, thirty six existing finite difference schemes and two splitting techniques have been reviewed and compared by applying them to the following cases: i) 1-D and 2-D pure convection, ii) 1-D and 2-D convection and diffusion, and iii) 1-D non-linear Burger's equation. Modifications to some of the considered schemes have also been proposed, together with two new higher-order accurate finite difference schemes for modelling the convection of high concentration gradients. The schemes were derived using a piecewise cubic interpolation and an universal limiter (proposed scheme 1) or a modified form of the TVD filter (proposed scheme 2). The schemes have been tested for: i) 1-D and 2-D pure convection, and ii) 2-D convection and diffusion problems. The schemes have produced accurate, oscillation-free and non-clipped solutions, comparable with the ULTIMATE fifth- and sixth-order schemes. However, the proposed schemes need only three (proposed scheme 1) or five cell stencils. Hence, they are very attractive and can be easily implemented to solve convection dominated problems for complex bathymetries with flooding and drying. The 3-D sediment transport equation was solved using a splitting technique, with two different techniques being considered. With this technique the 3-D convective-diffusion equation for suspended sediment fluxes was split into consecutive 1-D convection, diffusion and convective-diffusion equations. The modified and proposed higher-order accurate finite difference schemes mentioned above were then used to solve the consecutive 1-D equations. The model has been calibrated and verified by applying it to predict the development of suspended sediment concentration profiles under non-equilibrium conditions in three test flumes. The results of numerical predictions were compared with existing analytical solutions and experimental data. The numerical results were in excellent agreement with the analytical solutions and were in reasonable agreement with the experimental data. Finally, the model has also been applied to predict sediment concentration and velocity profiles in the Humber Estuary, UK. Reasonable agreement was obtained between the model predictions and the corresponding field measurements, particularly when considered in the light of usual sediment transport predictions. The model is therefore thought to be a potentially useful tool for hydraulic engineers involved in practical case studies
85

SNM neutron detection using a time-gated synthetic aperture hybrid approach

Molinar, Matthew P. 13 January 2014 (has links)
This work focuses on using forward and adjoint transport in a hybrid application of 3-D deterministic (PENTRAN) and Monte Carlo (MCNP5) codes to model a series of neutron detector blocks. These blocks, or “channels,” contain a unique set of moderators with 4 atm He-3 proportional detectors tuned to detect and profile a gross energy spectrum of a passing neutron (SNM) source. Ganging the units together as a large area system enables one to apply time gating the source-detector response to maximize signal to noise responses from a passing source with minimal background; multiple units may be positioned as a collective synthetic aperture detector array to be used as a way of performing real time neutron spectroscopy for detecting special nuclear materials in moving vehicles.
86

INCREASING MONITORING CAPACITY TO KEEP PACE WITH THE WIRELESS REVOLUTION

Chu, Joni, Harrison, Irving 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / With wireless communications becoming the rule rather than the exception, satellite operators need tools to effectively monitor increasingly large and complex satellite constellations. Visual data monitoring increases the monitoring capacity of satellite operators by several orders of magnitude, enabling them to track hundreds of thousands of parameters in real-time on a single screen. With this powerful new tool, operators can proactively address potential problems before they become customer complaints.
87

NEXT GENERATION DATA VISUALIZATION AND ANALYSIS FOR SATELLITE, NETWORK, AND GROUND STATION OPERATIONS

Harrison, Irving 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Recent years have seen a sharp rise in the size of satellite constellations. The monitoring and analysis tools in use today, however, were developed for smaller constellations and are ill-equipped to handle the increased volume of telemetry data. A new technology that can accommodate vast quantities of data is 3-D visualization. Data is abstracted to show the degree to which it deviates from normal, allowing an analyst to absorb the status of thousands of parameters in a single glance. Trend alarms notify the user of dangerous trends before data exceeds normal limits. Used appropriately, 3-D visualization can extend the life of a satellite by ten to twenty percent.
88

3-D Ray-Tracing Simulations for 5.7GHz RF Indoor Position Location System

Annamraju, Venu, Burns, Thomas 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The objective of the project is to continuously track a handheld device in an office, with centimeter accuracy in the three dimensions. A 3-D ray-tracing algorithm has been developed to simulate the impulse response of the indoor channel. The algorithm can evaluate the impulse response at multiple receiver locations. Non-linear optimization has been used to eliminate the need for multiple runs of simulation. The optimization program also significantly reduces the number of rays launched. The algorithm incorporates bandwidth effects on multipath resolution of the system.
89

Modeling, design, fabrication and characterization of power delivery networks and resonance suppression in double-sided 3-D glass interposer packages

Kumar, Gokul 07 January 2016 (has links)
Effective power delivery in Double-sided 3-D glass interposer packages was proposed, investigated, and demonstrated towards achieving high logic-to-memory bandwidth. Such 3-D interposers enable a simpler alternative to direct 3-D stacking by providing low-loss, wide-I/O channels between the logic device on one side of the ultra-thin glass interposer and memory stack on the other side, eliminating the need for complex TSVs in the logic die. A simplified PDN design approach with power-ground planes was proposed to overcome resonance challenges from (a) added parasitic inductance in the lateral power delivery path from the printed wiring board (PWB), due to die placement on the bottom side of the interposer, and (b) the low-loss property of the glass substrate. Based on this approach, this dissertation developed three important suppression solutions using, (a) the 3-D interposer package configuration, (b) the selection of embedded and SMT-based decoupling capacitors, and (c) coaxial power-ground planes with TPVs. The self-impedance of the 3-D glass interposer PDN was simulated using electromagnetic solvers, including printed-wiring-board (PWB) and chip-level models. Two-metal and four-metal layer test vehicles were fabricated on 30-μm and 100-μm thick glass substrates using a panel-based double-side fabrication process, for potential lower cost and improved electrical performance. The PDN test structures were characterized upto 20 GHz, to demonstrate the measured verification of (a) 3-D glass interposer power delivery network and (b) resonance suppression. The data and analysis presented in this dissertation prove that the objectives of this research were met successfully, leading to the first demonstration of effective PDN design in ultra-thin (30-100μm), and 3-D double-sided glass BGA packages, by suppressing the PDN noise from mode resonances.
90

Recognising three-dimensional objects using parameterized volumetric models

Borges, Dibio Leandro January 1996 (has links)
This thesis addressed the problem of recognizing 3-D objects, using shape information extracted from range images, and parameterized volumetric models. The domains of the geometric shapes explored is that of complex curved objects with articulated parts, and a great deal of similarity between some of the parts. These objects are exemplified by animal shapes, however the general characteristics and complexity of these shapes are present in a wide range of other natural and man-made objects. In model-based object recognition three main issues constrain the design of a complete solution: representation, feature extraction, and interpretation. this thesis develops an integrated approach that addresses these three issues in the context of the above mentioned domain of objects. For representation I propose a composite description using globally deformable superquadratics and a set of volumetric primitives called geons: this description is shown to have representational and discriminative properties suitable for recognition. Feature extraction comprises a segmentation process which develops a method to extract a parts-based description of the objects as assemblies of defoemable superquadratics. Discontinuity points detected from the images are linked using 'active contour' minimization technique, and deformable superquadratic models are fitted to the resulting regions afterwards. Interpretation is split into three components: classification of parts, matching, and pose estimation. A Radical Basis Function [RBF] classifier algoritm is presented in order to classify the superquadratics shapes derived from the segmentation into one of twelve geon classes. The matching component is decomposed into two stages: first, an indexing scheme which makes effective use of the output of the [RBF] classifier in order to direct the search to the models which contain the parts identified. this makes the search more efficient, and with a model library that is organised in a meaningful and robust way, permits growth without compromising performance. Second, a method is proposed where the hypotheses picked from the index are searched using an Interpretation Tree algorithm combined with a quality measure to evaluate the bindings and the final valid hypotheses based on Possibility Theory, or Theory of Fuzzy Sets. The valid hypotheses ranked by the matching process are then passed to the pose estimation module. This module uses a Kalman Filter technique that includes the constraints on the articulations as perfect measurements, and as such provides a robust and generic way to estimate pose in object domains such as the one approached here. These techniques are then combined to produce an integrated approach to the object recognition task. The thesis develops such an integrated approach, and evaluates its perfomance inthe sample domain. Future extensions of each technique and the overall integration strategy are discussed.

Page generated in 0.0279 seconds