• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2819
  • 994
  • 582
  • 554
  • 541
  • 250
  • 185
  • 115
  • 101
  • 77
  • 50
  • 43
  • 24
  • 24
  • 22
  • Tagged with
  • 7209
  • 1341
  • 1041
  • 792
  • 628
  • 592
  • 539
  • 485
  • 480
  • 467
  • 467
  • 445
  • 372
  • 363
  • 357
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

3D printing of gold nanoparticles

Posluk, Patrick January 2020 (has links)
and the placement of the material. Hence, 3D printing can be an advantageous new method of constructing supercapacitors.In this thesis, the aim was to investigate how the different parameters of Electrohydrodynamic printing (EHD printing) will affect the spread of gold nanoparticles. The electrohydrodynamic printing method is a printing method that utilizes an electric field to cause droplet ejection from the nozzle. When the electric field exerts a force on the solution containing nanoparticles, it stretches the meniscus to a point where it becomes unstable and forms a droplet. EHD printing utilizes an electric field which gives the method a high spatial accuracy while being able to print droplets with within a separation distance of tens of nanometers.Different parameters were evaluated to achieve desired distribution of gold nanoparticles across a silicon wafer substrate. This thesis focuses on print speed, frequency, heat treatment and voltage, and how printing parameters affect the results. The results revealed a variation, while the printing patterns follow a trend. The best results achieved in this work came from a low nozzle-substrate voltage, high frequency, and high printing speed. The varying results could be brought on by variation in ink composition, the nozzle diameter, and the metal coating of the capillary, to name a few possible causes.Handledare:
272

3D-skanning av objekt skapad i CAD - metod och toleransanalys / 3D-scanning of CAD-designed objects – method and tolerance analysis

Larsson, Filip January 2020 (has links)
I detta examensarbete beskrivs, testas och utvärderas tekniken strukturerat ljus 3D-skanning under användning av en kommersiell 3D-skanner. Arbetet utfördes på institutionen för tillämpad fysik och elektronik vid Umeå universitet och tanken med arbetet var att det ska underlätta implementering av 3D-skanning i undervisningen för högskoleingenjörsprogrammet maskinteknik. Tre olika objekt skapades i CAD och skrevs ut i en 3D-skrivare för att sedan skannas in med 3Dskannern. En noggrann toleransanalys med en tolerans på 0,2 mm utfördes genom att mäta och jämföra olika mått mellan CAD-modell, 3D-utskriven modell och 3D-skannad modell. Hela processen från CAD till insamling av mätdata och inskannad 3D-modell är väldokumenterad i form av en guide. Det beskrivs vilka tekniska funktioner skannern har och om den uppfyller kraven som ställs på dess noggrannhet och precision. Resultaten för arbetet visar att skannern är kapabel att återskapa fysiska objekt med stor noggrannhet och kan användas för att göra en toleransanalys. Beroende på typ av objekt, kommer en av de tre olika skanningsmetoderna, Fixed Scan, Rapid Scan eller HD Scan ge bäst prestanda. Utifrån resultaten för de objekt som skapades kan man se att skannern är mest lämpad för att skanna detaljrika objekt, avancerade geometrier och ytor med låg reflektion. / In this thesis, the technology structured light 3D-scanning is described, tested and evaluated using a commercial 3D-scanner. The work was carried out at the Department of Applied Physics and Electronics at Umeå University and the idea of the work was to facilitate the implementation of 3D-scanning in the mechanical engineering program. Three different objects were created in CAD and printed out from an 3D-printer and then scanned in with the 3D-scanner. A detailed tolerance analysis with a tolerance of 0.2 mm was performed by measuring and comparing different distances on the CAD model, the 3D-printed model and the 3D-scanned model. The entire process from CAD to collection of measurement data and 3Dscanned model is well documented in the form of a guide. It describes the technical functions of the scanner and whether it meets the requirements for its expected accuracy and precision. The results of the work show that the scanner is capable of recreating physical objects with great accuracy and can be used to perform a tolerance analysis. Depending on the type of object being scanned, one of the available three different scanning methods, Fixed Scan, Rapid Scan or HD Scan, will provide performance. Based on the results of the objects created, it can be seen that the scanner is best suited for scanning detailed objects, advanced geometries and surfaces with low reflectivity.
273

Topology Optimization of 3D Printed Flexural Elements

January 2020 (has links)
abstract: Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale and large-scale printing applications modelled by finite element analysis software and printed for laboratory testing. The laboratory testing included mortar cylinder testing, digital image correlation (DIC), and four pointbending tests. Results demonstrated comparable performance between casted, printed solid, and printed optimized flexural elements. Results additionally mimicked finite element models regarding failure regions. / Dissertation/Thesis / Masters Thesis Engineering 2020
274

Computational Imaging and Its Applications in Fluids

Xiong, Jinhui 13 September 2021 (has links)
Computational imaging di↵ers from traditional imaging system by integrating an encoded measurement system and a tailored computational algorithm to extract interesting scene features. This dissertation demonstrates two approaches which apply computational imaging methods to the fluid domain. In the first approach, we study the problem of reconstructing time-varying 3D- 3C fluid velocity vector fields. We extend 2D Particle Imaging Velocimetry to three dimensions by encoding depth into color (a “rainbow”). For reconstruction, we derive an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. This velocity field can be used to refine the position estimate by adding physical priors that tie together all the time steps, forming a joint reconstruction scheme. In the second approach, we study the problem of reconstructing the 3D shape of underwater environments. The distortions from the moving water surface provide a changing parallax for each point on the underwater surface. We utilize this observation by jointly estimating both the underwater geometry and the dynamic shape of the water surface. To this end, we propose a novel di↵erentiable framework to tie together all parameters in an integrated image formation model. To our knowledge, this is the first solution that is capable to simultaneously retrieve the structure of dynamic water surfaces and static underwater scene geometry in the wild.
275

Design 3D tiskárny / Design of 3D Printer

Chrástek, Jan January 2017 (has links)
Diploma thesis is focused on design of stereolithography 3D printer, which includes new technology and innovations to achive larger workspace and easy and comfortable manipulation. Great part of thesis is focused on shaping and aesthetic effect with respect of functional, safety, ergonomic and technical claims.
276

Návrh 3D joysticku se šesti stupni volnosti / Design of 3D joystick with 6DOF

Magyerka, Ladislav January 2018 (has links)
The aim of the diploma thesis was to design a complete controller device with six degrees of freedom for use in computer simulators. After the analysis of current available devices, a model of mechanism was created for production using a 3D printer. Subsequently, electronics and utility software were designed to process received sensor readings. Finally, the finished device was tested in several applications.
277

Bezpodporový 3D tisk na 6-ti osém robotickém rameni / Supportless 3D print by 6-axis robotic arm

Krejčiřík, Petr January 2018 (has links)
This diploma thesis deals with the solution 3D printing by KUKA robotic arm without realization of supporting structures. The 6-axis KUKA KR 60HA robotic arm allows adjusting 3D printing strategies compared to classical 3D printing concept. The first part of the diploma thesis is about the identification of the current state of knowledge, especially the state of the experimental device for the robotic 3D print. To improve quality of the printed is necessary to modify the printing head and develop the suitable calibration principle. Special printing strategies were designed to rearch the 3D printing overhead volumes without creating support structure. A special alghoritm in the Grasshopper evnironment was developed for generating 3D print trajectory on the body surface. For the quality improvement it is necessary to optimize the process parameters. The final step is experimental 3D printing with the evaluation of surface dimensions, geometric precision and layer coherence in various printing strategies.
278

Korekce barev 3D scanneru a 3D tiskárny / Color Correction for 3D scanner and 3D printer

Kratochvíla, Michael January 2019 (has links)
This thesis deals with color correction of a chain that starts with the 3D Artec MHT scanner, and ends with the 3D printers (CJP – Color Jet Printing technology). In principle, it is necessary to control the color interpretation of the entire chain from the scanning of real models to the 3D print model. With color properties and their color shade, including color textures. The principle of model surface scanning using a 3D scanner is in the same principle as photo camera which scans using a conventional CMOS chip. For this reason, color palettes were scanned using the photo camera and the resulting digital data were analyzed by the Darktable software. This analysis consisted of comparing the scanned color shades of the surface with the spectrofotometer measured data. The main goal of this method was to achieve color precision in the digital data during their acquirement, adjustment and interpretation. Then the same principle was applied to the data acquired by the 3D scanner to create an ICC profile of the 3D scanner. Because the 3D printer (CJP – Color Jet Printing) uses the same principle as the 2D printer, the 2D printing device calibration principle was used again to calibrate it. There have been defined procedures that adjust the color shade to the spectrophotometrically correct shades of the resulting print on a 3D printer. Color swatches were also printed for print quality verification. It has been found that with photo camera, which was used for objective measurement in the L*a*b* coordinates of independent space, any color setting and their adjustment is very sensitive to even small imprecisions. It has been found that it is not easy to obtain accurate colors within the Detla E
279

Výroba částí prototypových forem s využitím metod rapid prototyping / Production of prototype mold parts using rapid prototyping methods

Kaloda, Vít January 2020 (has links)
The diploma thesis pointed out the possibility of using rapid prototyping methods in the field of plastic injection, specifically to make shaped inserts into the injection mold. The universal frame of the injection mold was used and only the shaped inserts were changed. The main part of the work was the construction of an injection mold with the subsequent practical production of shaped inserts for a specified part. In the introductory part, a theoretical search was performed, about which production methods in combination with suitable materials could be theoretically used. Furthermore, the polyjet and DLP methods were chosen, which were used to produce components (core and cavity). The result of the diploma thesis was a summary of all parameters, comparison of materials and production methods. Polypropylene and polyamide 6 materials were injected into the injection mold, from which the first prototype products were made. Instructions for the production of shaped inserts with the recommended technology and material were created for the selected type, which could be used in practice.
280

Parametrické 3D modely / Parametric 3D Models

Ondrejó, Michal January 2020 (has links)
The aim of this work is to propose possibilities of interconnection of objects in parametric model. Individual options are implemented in the parametric three-dimensional modeling system. This system allows the creation of models using various geometric operations, change parameters at any time, animate the created model, and save the parametric model in a human-readable format. The proposed solution was implemented and evaluated on simple example.

Page generated in 0.0342 seconds