• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2839
  • 994
  • 582
  • 554
  • 541
  • 252
  • 187
  • 121
  • 101
  • 80
  • 50
  • 43
  • 24
  • 24
  • 22
  • Tagged with
  • 7251
  • 1351
  • 1046
  • 802
  • 629
  • 597
  • 540
  • 487
  • 482
  • 476
  • 470
  • 448
  • 377
  • 363
  • 357
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Oljeavskiljare för biltvätt : Från idé till prototyp

Nahid, Mustafa Hammodi January 2015 (has links)
This thesis describes the development of a device called "Oil Separator" which is used for washing vehicles and particularly car washing. The device developed for Mr. Car Bilvård AB in Uppsala, the company's work involves passenger transport and courier services. The company needs an external device that meets the environmental standards to wash their own cars in the premises without the need to modify or reconstruct on the premises ground as the premises is on a leased contract. Work began with a preliminary study on the literatures that describes both the function and structure of designing the device. A few interviews with other car wash companies had been implemented, and some measurements. After collection of the necessary information the specifications of customer requirement was presented . With these requirements a few concepts was generated and weighed using the Pugh matrix for concepts selection for further development. The final concept was further developed and a design has been presented. A design of the washing place was taken up also which does not require any change in the premises by putting it on the ground. A functional smaller prototype of the oil separator was developed and tested.
492

Using IEEE 1500 for wafer testing of TSV Based 3D integrated circuits

Ugland, Ryan A. 24 February 2012 (has links)
The potential end of Moore's law has caused the semiconductor industry to investigate 3D integrated circuits as a way to continue to increase transistor density. Solutions must be put in place to allow each 3D IC die layer to be tested thoroughly on its own at wafer level to unsure adequate yield on assembled 3D devices. This paper details the testability of a 3D implementation of the Open Cores or1200 architecture. IEEE 1500 is used to signi cantly improve wafer level testability of the 3D IC die layers while maintaining a low test pin count requirement. / text
493

Three-dimensional geoacoustic perturbative inverse technique for the shallow ocean water column

Bender, Christopher Matthew 04 March 2013 (has links)
This work focuses on developing an inversion scheme to estimate water-column sound-speed fields in three dimensions. The inversion scheme is based on a linearized perturbative technique which utilizes estimates of modal travel times. The technique is appropriate in the littoral ocean where measurements are made across range and cross-range distances greater than 10 km to ensure sufficient modal dispersion. Previous applications of then inversion technique has been limited to one or two dimensions and/or focused primarily on the seabed. Compared to past applications, the accuracy and uncertainty of the solution is improved by employing approximate equality constraints within the context of \textit{a priori} estimates of model and data covariances. The effectiveness of the constrained technique is explored through a one-dimensional example. The robustness of the technique is illustrated by introducing different types of errors into the inversion and considering the accuracy. A further examination of the technique is given by exploring a three-dimensional example. Several case studies are presented to investigate the effects of different levels of environmental variability and spatial sampling. / text
494

Applications of microsimulation traffic data in infrastructure construction projects using 3D/4D CAD models

Mandali, Yoganand 09 October 2013 (has links)
Transportation projects often involve communication of project information between diverse parties and have been a challenge with increasing complexity. Communication, review and feedback are very important for planners, builders/developers and traffic engineers for successful project execution. Past research was successful in finding effective ways to communicate to stakeholders and improve project performance. 3D/4D CAD modeling has been one among them which offers potential benefits from planning to construction phase owing to its wide range of capabilities. However, there is no single tool to analyze traffic conditions and changing geometry during construction for reviewing and better decision-making. A methodology to use DTA models as a source for traffic information and development of traffic visualization during construction with microsimulation output is discussed in this thesis. The benefits of adding traffic information to 3D/4D CAD models and some potential areas of application are explored. Two case studies on TxDOT transportation construction projects are considered to explain the modeling and analysis for better understanding of different phases of the projects. Also, a small construction scenario was analyzed to validate the traffic data generated from DTA models for their use as an input to microsimulation models. / text
495

3D image processing and FPGA implementation for optical coherence tomography

Carroll, Sylvia D 25 October 2013 (has links)
This thesis discusses certain aspects of the noninvasive imaging technique known as optical coherence tomography (OCT). Topics include three-dimensional image rendering as well as application of the Fast Fourier Transform to reconstruct the axial scan as a function of depth. Implementations use LabVIEW system design software and a Xilinx Spartan-6 field-programmable gate array (FPGA). The inherent parallel-processing capability of an FPGA opens the possibility of designing a "super-sensor" which entails simultaneous capturing of image and sensor data, giving medical practitioners more data for potentially improved diagnosis. FPGA-based processing would benefit many methods of characterizing biological samples; OCT and photonic crystal microarray biosensors are discussed. / text
496

Morphologies and controls on development of Pliocene-Pleistocene carbonate platforms : Northern Carnarvon Basin, Northwest Shelf of Australia

Goktas, Pinar 15 November 2013 (has links)
The detailed morphologies, evolution and termination of Neogene tropical carbonate platforms in the Northern Carnarvon Basin (NCB) on the passive margin of the Northwest Shelf of Australia reveal information on the history of local oceanographic processes and changing climate. Cool-water carbonate deposition, dominant during the early-middle Miocene, was superseded by a siliciclastic influx, which prograded across the shelf beginning in the late-middle Miocene during a period of long-term global sea-level fall. The resulting prograding clinoform sets, interpreted as delta lobes, created relict topographic highs following Pliocene termination of the siliciclastic influx (Sanchez et al., 2012a; 2012b). These highs created a favorable shallow-water environment for subsequent photozoan carbonate production. A composite, commercial 3D seismic volume allows investigation of the temporal and spatial evolution of the resulting Pliocene-Pleistocene carbonate platforms. Initiation of carbonate development, in addition to being a response to cessation of siliciclastic influx and the existence of suitable shallow-water substrate, was also influenced by the development of the warm-water Leeuwin Current (LC), flowing southwestward along the margin. Four flat-topped platforms are mapped; each platform top is a sequence boundary defined by onlap above and truncation below the boundary. Successive platforms migrated southwestward, along-strike. Internally, platforms have progradational seismic geometries. The mapped platform tops are large (≥ 10 km wide). Evidence of karst (e.g., v-shaped troughs up to 50m deep and ~1 km wide and broader karst basins up to 20 km2 coverage area) on platform tops suggests episodic subaerial exposure that contributed to the demise of individual platforms. The most recent platform, platform 4, is unique in having interpreted reefs superimposed on the progradational platform base. The base of these reefs now lies at ~153 m and the reefs may therefore have developed post-LGM (~21 Ka). The reefs subsequently drowned, with drowning possibly aided by turbidity associated with formation of adjacent sediment drifts and weakening and strengthening LC during the late Pleistocene. The progressive drowning and termination of platforms from northeast to southwest along strike may result from differential compaction of the deltaic substrate or differential tectonic subsidence caused by the collision at the Banda Arc between the Australian and Pacific plates / text
497

An architecture for incorporating interactive visualizations into scientific simulations

Mathur, Ravishankar 17 September 2015 (has links)
As scientific simulations get increasingly complex, so do the requirements of how to deal with the data that is produced. Few scientists and engineers today are satisfied with just looking at streams of numbers; we require graphical visualizations to better understand their meaning. The traditional method of visualization has been to save the simulation's results to a file, then load that file up in another program (eg. Microsoft Excel) for post-processing. Although post-processing data to produce visualizations may be sufficient for some simple simulations, a modern simulation designer usually wants more out of their visualization. Perhaps they want the visualization to be a 3D plot of an interplanetary trajectory, with the ability to zoom, pan, and rotate the scene interactively. Until now, doing so has required the designer to become adept at computer graphics, which is a feat that almost no scientist or engineer has the time to attempt. The research undertaken here introduces an architecture by which a simulation programmer can easily add interactive 3D visualizations to their simulations. This architecture has several benefits over existing visualization packages, the biggest one being that no knowledge of computer graphics is required to use the it in one's own simulations. Another benefit is that the resulting visualization is interactive by default, without any extra programming required on the part of the simulation designer. This thesis begins by introducing the theory behind how scientific simulations want to visualize data. Common aspects of all simulations are identified, and are used to develop a common "visualization language" that can be used by any simulation designer to specify what they want to visualize. The second part of the thesis specifies a particular implementation of this visualization language, called OpenFrames. Open- Frames is a library of functions that can be called from C, C++, or FORTRAN, and automatically implements the visualization specified by the designer.
498

Bedömning av etiologi till mitralisinsufficiens med 2DTEE vs. 3DTEE : En jämförande studie mellan oerfaren och erfaren ekokardiograför / Evaluation of mitral regurgitation aetiology using 2DTEE vs. 3DTEE : A comparative study between an inexperienced and an experienced observer

Lindelöf, Linnea January 2015 (has links)
No description available.
499

Utveckling av metodik och mjukvaraför solenergianalys i 3D-miljö / Development of methodology and software for detailed solar energy analysis in 3D

Näslund, Johan January 2015 (has links)
Creating 3D city models is a hot topic today. Achieving a well-defined 3D representation of urban environments requires large amounts of collected data combined with heavy processing of the data, both manually and automatically. The complexity makes it both expensive and time consuming to create accurate city models. An area which will truly benefit from well-defined city models is solar analysis. There are many tools available today for solar analysis but something all the tools have in common is that radiation calculations are very time consuming. The flexibility of the calculations in time and space domain are also below satisfaction. In this thesis a software was developed and included in a new methodology to go from high resolution elevation data to complete 3D environments. Solar radiation calculations were also implemented to be performed on the finished 3D buildings. The proposed method for radiation calculations is using the fact that the GPU handles some tasks better than the CPU and thereby reducing the calculation times. The results show that the finished 3D models are a relatively accurate representation of the real-life objects and they are well adapted for the purpose of radiation analysis. A validation of radiation calculations were also done using radiation sensors on modelled buildings. According to measured values the model seems to make a good estimation of clear-sky radiation. The calculation times are promising and there’s most probably room for further optimizations.
500

Test and Debug Solutions for 3D-Stacked Integrated Circuits

Deutsch, Sergej January 2015 (has links)
<p>Three-dimensional (3D) stacking using through-silicon vias (TSVs) promises higher integration levels in a single package, keeping pace with Moore's law. TSVs are small copper or tungsten vias that go vertically through the substrate of a die and provide vertical interconnects to a die stacked on top. TSV-based interconnects have benefits in terms of performance, interconnect density, and power efficiency.</p><p>Testing has been identified as a showstopper for volume manufacturing of 3D-stacked integrated circuits (3D ICs). A number of challenges associated with 3D test need to be addressed before 3D ICs can become economically viable. This dissertation provides solutions to new challenges related to 3D test content, test access, diagnosis and debug.</p><p>Test content specific to 3D ICs targets defect that occur during TSV manufacturing and stacking process. One example is the effect of thermo-mechanical stress due to TSV fabrication process on the surrounding logic gates. In this dissertation, we analyze these effects and their consequences for delay testing. We provide quantitative results showing that the use of TSV-stress oblivious circuit models for test generation leads to considerable reduction in delay-test quality. We propose a test flow that uses TSV-stress aware circuit models to improve test quality.</p><p>Another example of 3D-specific test challenge is the testability of TSVs. In this dissertation, we focus on TSV test prior to die bonding, as access to TSVs is limited at this stage. We propose a non-invasive method for pre-bond TSV test that does not require TSV probing. The method uses ring oscillators and duty-cycle detectors in order to detect variations in propagation delay of gates connected to a single-sided TSV. Based on the measured variations, we can diagnose the TSV and predict the size of resistive-open and leakage faults using a regression model based on artificial neural networks. In addition, we exploit different voltage levels to increase the robustness of the test method.</p><p>In order to efficiently deliver test content to structures under test in a 3D stack, 3D design-for-test (DfT) architectures are needed. In this dissertation, we discuss existing 3D-DfT architectures and their optimization. We propose an optimization approach that takes uncertainties in input parameters into account and provides a solution that is efficient in the presence of input-parameter variations and minimizes test time, therefore reducing test cost.</p><p>Post-silicon debug is a major challenge due to continuously increasing design complexity. Traditional debug methods using signal tracing suffer from the limited capacity of on-chip trace buffers that only allow for signal observation during a short time window. This dissertation proposes a low-cost debug architecture for massive signal tracing in 3D-stacked ICs with wide-I/O DRAM dies. The key idea is to use available on-chip DRAM for trace-data storage, which results in a significant increase of the observation window compared to traditional methods that use trace buffers. In addition, the proposed on-chip debug circuitry can identify erroneous segments of observed data by using compact signatures that are stored in the DRAM a priori. Only failing intervals are off-loaded from a temporary trace buffer into DRAM, allowing for a more efficient use of the memory, resulting in a larger observation window.</p><p>In summary, this dissertation provides solutions to several challenges related to 3D test and debug that need to be addressed before volume manufacturing of 3D ICs can be viable.</p> / Dissertation

Page generated in 0.0803 seconds