• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planejamento digital e impressão 3d, aplicado em reabilitações totais fixas sobre implantes / Digital planning and 3D printing, applied in total implant supported fixed prostheses

Candeias, Bruno Paes [UNESP] 09 August 2018 (has links)
Submitted by Bruno Paes Candeias (candeias.b@yahoo.com) on 2018-11-08T19:01:07Z No. of bitstreams: 1 Bruno para impressao.pdf: 1812757 bytes, checksum: 519530f8f67d0ba433e61d7c25c8ab9a (MD5) / Approved for entry into archive by Silvana Alvarez null (silvana@ict.unesp.br) on 2018-11-19T18:53:44Z (GMT) No. of bitstreams: 1 candeias_.bp_me_sjc.pdf: 1812757 bytes, checksum: 519530f8f67d0ba433e61d7c25c8ab9a (MD5) / Made available in DSpace on 2018-11-19T18:53:44Z (GMT). No. of bitstreams: 1 candeias_.bp_me_sjc.pdf: 1812757 bytes, checksum: 519530f8f67d0ba433e61d7c25c8ab9a (MD5) Previous issue date: 2018-08-09 / O objetivo desse estudo foi desenvolver uma infraestrutura de prótese total fixa sobre implantes em impressora 3D, elaborada em conjunto com uma guia cirúrgica digital, também impressa, diminuindo o número de sessões e substituindo a necessidade de moldagem logo após o procedimento cirúrgico. Para isso um paciente, sexo masculino, 60 anos de idade e apresentando apenas a presença do elemento dental 36 na arcada inferior, foi convidado a participar do estudo após leitura e assinatura de Termo de Consentimento Livre e Esclarecido. Foi realizada moldagem da arcada superior e inferior do paciente com alginato para confecção do modelo de estudo com gesso pedra especial. Os modelos foram escaneados com a utilização de scanner Xcad 3D, para a realização do planejamento cirúrgico e protético. A partir dos exames tomográficos foram obtidos os arquivos DICOM. Estes arquivos foram utilizados para o inicio do planejamento digital, sendo incluídos no software para planejamento específico. Foi realizado o planejamento virtual com o auxílio do software, sendo: instalação de 4 implantes do tipo hexágono externo de 13mm por 3,75mm cada, o que gerou automaticamente pelo software a guia cirúrgica para instalação dos mesmos. A mesma foi impressa com o uso de uma impressora 3D de polímeros. A guia cirúrgica continha quatro orifícios para instalação dos implantes planejados, permitindo também a instalação de a ut nts. p s a olo açāo dos implantes, foram instalados pilares cônicos de 4,1mm de diâmetro com 3mm de altura de trans-mucoso. A barra protética final foi confeccionada com o mesmo padrão de conexão morse existente na guia cirúrgica, a partir de impressão 3D em material calcinável e fundido posteriormente. Dessa forma foi possível posicionar a barra sobre os abutments para confirmar e validar sua passividade. A técnica de impressão de barra protética guiada por uma guia cirúrgica também impressa e planejada em um software de planejamento odontológico específico demonstrou, em teste e análise em modelo de estudo, alta eficácia no aspecto de posicionamento 3D, adaptação da barra protética sobre os implantes e acertividade no que diz respeito a planejamento virtual / posição real dos implantes. / Digital planning and preparation of guides and prosthesis with the help of 3D printers is a reality on a daily basis, but in this study, we look for Develop a fully digitized and software-driven process to design and execute polymer and titanium printed guides and prostheses. Those Printed parts would already be structural parts of the final prosthesis, Cases of total fixed prostheses. With this we could exclude laboratory phases of the process of prosthetic preparation, optimizing time, cost and reducing everyday problems that affect clinicians in such processes as repetitions, lack of adaptation of the prosthesis structure, teeth assembly, among others. Titanium printing of such a final structure would allow an immediate installation, in Immediate loading surgeries, of the final prosthesis with the best possible adaptation, Enabling the clinician to execute cases of extreme challenges Without the need for castings and welds, thus Aesthetics to the patient reducing treatment time with assertiveness.
2

Possibilities and Limitations of using Production Waste PET and PES materials in Additive Manufacturing (3D Printing Technology)

Gopathi, Pranay, Surve, Pratik January 2017 (has links)
No description available.
3

Utveckling av betong för 3D-skrivare / Development of concrete for 3D-printers

Liljare, Mattias, Silveira Övrebö, Theodore January 2019 (has links)
3D-printing, också känt som additiv tillverkning, är en tillverkningsmetod som har revolutionerat många branscher och har växt stort både inom industrin och för privat användning. Tekniken använder sig utav en lager-på-lager metod för att tillverka olika objekt. Med dagens teknik går det att printa ut föremål av exempelvis metall, plast, betong och ett flertal andra material. Additiv tillverkning av betong ger möjligheten att skapa nya smarta konstruktionslösningar, vilket medför stora materialbesparingar och minskat materialspill. Produktionskostnader och hastighet kan också dra nytta av metoden genom att minska arbetskraft och eliminera kostnader för tillverkning och montering av gjutformar. Den här studien bidrar till en ökad förståelse för vad som krävs för att utveckla ett fungerande betongmaterial för additiv tillverkning. För att additiv tillverkning ska kunna standardiseras, bli mer kommersiellt och få en bredare användning krävs en djupare förståelse av betongens materialegenskaper. Detta eftersom materialet skiljer sig från konventionell betong. Syftet med detta projekt är att utveckla en betongblandning anpassad för additiv tillverkning. En undersökning görs för att hitta (i) en betongblandning med lämpliga mekaniska materialegenskaper och (ii) en betongblandning som är väl anpassad till 3Dskrivare. Det viktigaste för att en betongblandning ska kunna användas för additiv tillverkning är att blandningen kan pumpas genom systemet och extraheras genom munstycket vid tillverkning samt att slutmaterialet visar bra byggbarhet. Pumpbarhet är förutsättningen för att betongen ska kunna användas i en 3D-skrivare. Betongen ska vara tillräckligt smidig för att kunna pumpas ut genom ett munstycke, men även ha en tillräckligt god inre sammanhållning för att inte deformeras efter att den har pumpats ut. Pumpbarhet påverkas till stor del av vilken sorts pumpsystem som används. Resultaten varierar beroende på vilken pump, munstycke och slang som används vid materialtesterna. Det förefaller att en generell blandning anpassad för flera olika pumpsystem är svårt att uppnå. I det här arbetet har sex olika blandningar med olika variationer testats. Detta ledde till 38 blandningar som genomgått olika tester. De blandningarna med bäst resultat efter finjusteringar var blandning 4.1 och 5.1, de visade hög kvalité för pumpbarhet och byggbarhet. Blandning 4.1 innehåller vatten, anläggningscement, starvis 3040, glenium, CERW, krossballast och glasfibrer och blandning 5.1 är likadant fast med flygaska istället för CERW. / 3D printing, also known as additive manufacturing, is a manufacturing method that has revolutionized many industries and has grown widely both in industry and private use. The technique means using a layer-upon-layer method to manufacture different objects. With today's technology, it is possible to print objects of, for example, metal, plastic, concrete and several other materials. Additive manufacturing of concrete structures can be used to create new smart design solutions, which means significant material savings and reduced material waste. Production costs and time reduction may also be achieved using the method due to lower labor requirements and reduced costs for manufacturing and assembling of molds. This study contributes to an increased understanding of what is required to develop a functioning concrete material for additive manufacturing. In order for additive manufacturing to be standardized, become commercial and be broadly used, a deeper understanding of the concrete properties is required. This is because the material used in 3D printing differs from conventional concrete. The purpose of this project is to develop a concrete mixture adapted for additive manufacturing. A survey is made to find (i) a concrete mixture with suitable mechanical material properties, and (ii) a concrete mixture well adapted to 3D printers. The most important thing for a concrete mix to be used for additive production is that the mixture can be pumped through the system and extracted through the nozzle during manufacture and that the final material shows good buildability. Pumpability is a prerequisite for the concrete to be used in a 3D printer. The concrete must be sufficiently flexible to be pumped out through a nozzle, but also have a sufficiently good internal cohesion so as not to deform after it has been pumped out. Pumpability is largely affected by the type of pump system used. The results vary depending on the pump, nozzle and hose used in the material tests. It seems that a general mix adapted to several different pump systems is difficult to achieve. In this work, six different mixtures with different variations have been tested. This led to 38 mixtures that underwent various tests. The mixtures with the best results after fine adjustments were mix 4.1 and 5.1, they showed high quality for pumpability and buildability. Mixture 4.1 contains water, plant cement, starvis 3040, glenium, CERW, crush ballast and glass fibers and mixture 5.1 is similarly fixed with fly ash instead of CERW.

Page generated in 0.0632 seconds