• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 59
  • 31
  • 25
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

DEVELOPING A LOW COST BIOLOGICAL ADDITIVE MANUFACTURING SYSTEM FOR FABRICATING GEL EMBEDDED CELLULAR CONSTRUCTS.

Minck, Justin Stewart 01 June 2019 (has links)
Organ transplantation has made great progress since the first successful kidney transplant in 1953 and now more than one million tissue transplants are performed in the United States every year (www.organdonor.gov/statistics-stories, 2015). However, the hope and success of organ transplants are often overshadowed by their reputation as being notoriously difficult to procure because of donor-recipient matching and availability. In addition, those that are fortunate enough to receive a transplant are burdened with a lifetime of immunosuppressants. The field of regenerative medicine is currently making exceptional progress toward making it possible for a patient to be their own donor. Cells from a patient can be collected, reprogrammed into stem cells, and then differentiated into specific cell types. This technology combined with recent advances in 3D printing provides a unique opportunity. Cells can now be accurately deposited with computerized precision allowing tissue engineering from the inside out (Gill, 2016). However, more work needs to be done as these techniques have yet to be perfected. Bioprinters can cost hundreds of thousands of dollars, and the bioink they consume costs thousands per liter. The resulting cost in development of protocols required for effective tissue printing can thus be cost-prohibitive, limiting the research to labs which can afford this exorbitant cost and in turn slowing the progress made in the eventual creation of patient derived stem cell engineered organs. The objective of my research is to develop a simple and low-cost introductory system for biological additive manufacturing (Otherwise known as 3D bioprinting). To create an easily accessible and cost-effective system several design constraints were implemented. First, the system had to use mechanical components that could be purchased “off-the-shelf” from commonly available retailers. Second, any mechanical components involved had to be easily sterilizable, modifiable, and compatible with open-source software. Third, any customized components had to be fabricated using only 3D printing and basic tools (i.e. saw, screwdriver, and wrench). Fourth, the system and any expendable materials should be financially available to underfunded school labs, in addition to being sterilizable, biocompatible, customizable, and biodegradable. Finally, all hardware and expendables had to be simple enough as to be operated by high school science students.
22

Oxidized soybean oil alters the expression of PPAR gamma and target genes in 3T3-L1 cells

Dingels, Nicole Katherine 15 November 2012 (has links)
Background: The typical western diet contains foods with modest amounts of lipid oxidation products. Previous work by us and others have demonstrated that mildly oxidized lipids promote a gain in fat mass while highly oxidized lipids decrease fat mass in rodents and triglyceride (TAG) accumulation in 3T3-L1 cells. Adipocyte differentiation is regulated by a key nuclear transcription factor known as PPARγ. Objective: To investigate if the alterations in triglyceride accumulation in 3T3-L1 cells pretreated with oxidized soy oil are due to 1) a change in PPARg DNA interactions 2) changes in the expression of SREBP-1c, PPARg, and/or its target genes. Main Methods: Confluent 3T3-L1 cells were pretreated for 24hours with 0.01% soy oil (SO) which was either unheated (unheated SO) or heated for 3, (3h-SO), 6 (6h-SO), or 9hours (9h-SO). The effect of 24hour soy oil exposure was assessed at several time points throughout the differentiation process. Alterations in PPARg DNA interaction was assessed using a PPARγ transcription factor assay kit while alterations in the expression of genes upstream and downstream of PPARγ was determined by RT-PCR. Primary and secondary products of oxidation within the SO were determined by spectrophotometry. Results: The 6hr-SO contained the greatest concentration of peroxides whereas both the 6hr-SO and 9hr-SO contained a significantly higher concentration of conjugated dienes and aldehydes.Nuclear extracts from 3T3-L1 cells pretreated with 6h-SO demonstrated the greatest reduction in PPARγ DNA binding. Compared to the unheated SO and mildly oxidized 3h-SO, cells treated with the 6h-SO had a significant reduction in SREBP-1c, PPARg, LPL, and GLUT4 expression occurring early in the differentiation process. Variations in the gene expression of 6hr-SO pretreated cells persisted within partially differentiated and mature adipocytes. Conclusions: Pre-treatment of preadipocytes with soy oil heated for ³ 6h greatly decreases the activity of PPARγ in the nucleus and adipogenic gene expression . These changes seen in early differentiation seem to correlate the best with the phenotype of reduced triglyceride accumulation seen in mature adipocytes.
23

Proteomics of Oxidative Stress Using Inducible CYP2E1 Expressing HepG2 Cells and 3T3-L1 Adipocytes as Model Systems

Newton, Billy Walker 2011 May 1900 (has links)
The overall goal of this research was to investigate oxidative stress related changes to the proteomes of 3T3-L1 adipocytes and an inducible CYP2E1 expressing HepG2 cells. Enhanced oxidative stress in hypertrophic adipocytes is associated with metabolic dysregulation and insulin resistance. Because mitochondria generate reactive oxygen species (ROS), we monitored changes to the adipocyte mitochondrial proteome during differentiation and enlargement. We labeled mitochondrial extracts from 3T3-L1 cells that were 0, 4, 7, 10, 14, and 18 days post differentiation with iTRAQ, followed by MS based identification. We found citric acid cycle proteins such as pyruvate carboxylase, citrate synthase, as well as beta-oxidation enzymes; cartinine acyl transferase and long-chain enoyl-CoA hydratase up-regulated from 7 through 18 days post differentiation onset. These data indicate TCA up-regulation for enhanced metabolic and citrate output necessary for lipid synthesis in adipocytes. Paradoxically, the data also show the simultaneous increase in the fatty acid oxidation, indicating a metabolic overdrive state. Biochemical assays showing peaks in ATP and ROS generation in 3 day old adipocytes provide further evidence of this overdrive state. A second peak in ROS generation occurred in 10 day old adipocytes; concurrent ATP generation reduced to near pre-adipocyte levels and this may indicate a metabolic shift that may be responsible for increased oxidative stress in hypertrophic adipocytes. We developed a doxycycline inducible CYP2E1 expressing HepG2 cell line using the pTet-On/pRevTRE expression system to allow greater control and sensitivity in the generation CYP2E1 mediated oxidative stress. Our cell line (RD12) demonstrated stability and tight expression control. After induction, RD12 cells showed 30 percent higher CYP2E1 activity when compared to the constitutive E47 cell line. RD12 cells showed 30 percent greater toxicity than E47 cells and 25 percent less free glutathione when exposed to 20 mM acetaminophen, indicating RD12 cells are more sensitive to the effects reactive intermediates and oxidative stress generated by CYP2E1. We conducted a survey of the toxicity of dietary fatty acids (oleic, linoleic, and palmitic) on HepG2 cells to determine fatty acid doses that induced metabolic changes, but did not cause excessive cell death. The dose of 0.20 mM linoleic and palmitic acid for 48 hours produced low toxicity, but oleic acid actually produced lower toxicity than untreated cells. After exposure cells were treated with a pro-oxidant to determine which fatty acid increased the susceptibility to protein carbonylation. The carbonylated protein isolation procedure indicated the palmitic acid may induce more carbonylation than oleic acid, but greater efficiency in the isolation procedure is required for a confidant determination.
24

Characterization of a murine gammaherpesvirus in vitro latency system

Mutyambizi, Kudakwashe 04 January 2010 (has links)
The human gammaherpesviruses EBV and KSHV realize their oncogenic potential during latent infection. The species specificity of the human gammaherpesviruses has hindered the study of latency in animal models. Murine gammaherpesvirus MHV-68 (MHV-68) may be used as a representative gammaherpesvirus for the study of latency. The goal was to establish an in vitro model of MHV-68 latency using replication defective MHV-68. ORF50 has been identified as the major viral trans-activator essential for entry into the lytic replication cycle and necessary and sufficient for reactivation of MHV-68 virus from latency. ORF50 null mutants (A50) can theoretically be used to infect cells in vitro to facilitate an analysis of virus gene expression and episome maintenance during latency. In this project A50 mutants containing the luciferase or green fluorescence protein (GFP) under OW50 promoter control were used to infect a variety of cell types. 3T3 fibroblasts are a permissive cell line and were used for an initial characterization of the ability of A50 MHV-68 to establish latency. B lymphocytes and macrophages are the major reservoirs of persistence in vivo thus the ability of A50 mutants to establish latency in NSO B and RAW macrophage cell lines was explored. Latency was readily established and maintained in 3T3 and RAW cells. The low infectability of NSO B- cells restricted the utility of this cell line in studies of latency. Examination of patterns of lytic and latent transcription in 3T3 and RAW cells coordinately infected with A50 MHV-68 revealed reactivation efficiencies of 40-60%. Following long-term passage A50 exhibited stable transcription of two latency related genes M2 and ORF73, with episomal maintenance of the viral genome, in the absence of contaminating lytic infection. The results demonstrate the utility of A50 mutants for studies of gammaherpesvirus latency in vivo.
25

Dynamic Monitoring of Cytotoxicity Using Electric Cell Substrate Impendence Sensing

Wafula, Alfred Brian 29 March 2006 (has links)
Electric cell-substrate impedance sensing (ECIS) pioneered by Giaever and Keese is suitable for continuous, automatic and real-time cell attachment analysis. ECIS is a novel electrical method to study, in real time, many of the activities of animal cells when grown in tissue culture. These include morphological changes, cell locomotion, and other behaviors directed by the cell's cytoskeleton. One of the most direct ECIS measurements is that of the attachment and spreading behaviors of cells. These measurements allow one to study and quantify the interaction of cultured cells with extracellular matrix (ECM) proteins and other macromolecules continuously and in real time. Traditionally, cell attachment and spreading measurements are labor intensive, requiring many manipulations of the cultures for microscopic evaluation of cell behavior. With ECIS, these same measurements can be made in an automated approach without opening the door of the incubator. The ECIS core technology is based on a technique of measuring the change in impedance of a small electrode to AC current flow. The heart of the measurement is a specialized slide that has 8 individual wells for cell culturing. The base of the device has an array of gold film electrodes that connect to the ECIS electronics to each of the 8 wells. In our work we used ECIS to study the attachment and spread of HUVEC and 3T3 cells. The curve of HUVEC showed higher resistances than that of 3T3 cells. This was due to the fact we used gelatin to aid in attachment of HUVECs which accounted for the high resistances. 3T3 cells attached easily without help of gelatin. We also studied the cytotoxicity of HUVEC and 3T3 cells. The drugs that we used were CB, H7 and CdCl2. We found that the best drug was CB since it affected the cells even at low concentrations. H7 effects were mild while CdCl2 only worked at high concentrations. HUVEC cells make loose contact on electrodes and are easily detached by drugs. 3T3 makes firm at tachment to the electrodes and are not easily detached from the electrodes. Electrical impedance measurements on multiple electrodes are highly attractive in this application because of the potential for direct computer control.
26

Mekanismer för inaktivering av lipoproteinlipas i 3T3-L1 celler : En studie av hur aktiviteten regleras med Angiopoietin-likt protein 4, Actinomycin D och Tumor Necrosis Factor alpha

Jansson, Camilla January 2012 (has links)
No description available.
27

Modulation of Lipopolysaccharide-Stimulated Adipokine Synthesis and Secretion by n-3 and n-6 Polyunsaturated Fatty Acids

Cranmer-Byng, Mary 01 May 2013 (has links)
Dysregulation of adipokines in obese adipose tissue contributes to inflammation and insulin resistance. Fatty acids and lipopolysaccharide (LPS) can modulate adipokine secretion, however, less is known about their effects in combination. Long-chain n-3 polyunsaturated fatty acids (PUFA) exert anti-inflammatory effects and less is known about other n-3 and n-6 PUFA, which are more prevalent in the typical diet. Co-incubation of 3T3-L1 adipocytes with LPS and long-chain n-3 PUFA decreased LPS-induced secreted MCP-1 protein. n-6 PUFA arachidonic acid and LPS synergistically increased MCP-1 and IL-6 secreted proteins. Plant-derived PUFA were relatively neutral stimuli. mRNA expression results suggest potential roles for G protein-coupled receptor 120 and toll-like receptor 2 in mediating the effects of long-chain n-3 PUFA and arachidonic acid, respectively. Overall, this thesis suggests that both n-3 and n-6 PUFA are important factors to consider in the development of nutritional strategies for improving adipose tissue inflammation associated with obesity. / NSERC CGS, Ontario Graduate Scholarship
28

Role of DNA Methylation in Adipogenesis

Chen, Yii-Shyuan 12 August 2014 (has links)
The increase in the prevalence of obesity and obesity-related diseases has caused greater attention to be placed on the molecular mechanisms controlling adipogenesis. In this study, we studied the role of 5-aza-2'-deoxycytidine (5-Aza-dC), an inhibitor of DNA methylation, on adipocyte differentiation. We found that inhibiting DNA methylation by 5-Aza-dC significantly inhibited adipocyte differentiation whereas promoting osteoblastogenesis. Wnt10a was up-regulated by 5-Aza-dC treatment and it was suggested that Wnt10a might play a vital role in suppressing adipogenesis and promoting osteoblastogenesis by inhibiting DNA methylation. In 3T3-L1 cells, Wnt signaling inhibitor IWP-2 was found to reverse the inhibitory effect of 5-Aza-dC on Adipocyte differentiation, whereas in mesenchymal stem cell line, ST2 cells, IWP-2 treatment reversed the effect of 5-Aza-dC on promoting osteoblastogenesis. These studies will provide a better understanding to the cause and treatment of obesity and bone-related diseases.
29

The Role of Substrate Stiffness on the Dynamics of Actin Rich Structures and Cell Behavior

Zeng, Yukai 01 November 2014 (has links)
Cell-substrate interactions influence various cellular processes such as morphology, motility, proliferation and differentiation. Actin dynamics within cells have been shown to be influenced by substrate stiffness, as NIH 3T3 fibroblasts grown on stiffer substrates tend to exhibit more prominent actin stress fiber formation. Circular dorsal ruffles (CDRs) are transient actin-rich ring-like structures within cells, induced by various growth factors, such as the platelet-derived growth factor (PDGF). CDRs grow and shrink in size after cells are stimulated with PDGF, eventually disappearing ten of minutes after stimulation. As substrate stiffness affect actin structures and cell motility, and CDRs are actin structures which have been previously linked to cell motility and macropinocytosis, the role of substrate stiffness on the properties of CDRs in NIH 3T3 fibroblasts and how they proceed to affect cell behavior is investigated. Cells were seeded on Poly-dimethylsiloxane (PDMS) substrates of various stiffnesses and stimulated with PDGF to induce CDR formation. It was found that an increase in substrate stiffness increases the lifetime of CDRs, but did not affect their size. A mathematical model of the signaling pathways involved in CDR formation is developed to provide insight into this lifetime and size dependence, and is linked to substrate stiffness via Rac-Rho antagonism. CDR formation did not affect the motility of cells seeded on 10 kPa stiff substrates, but is shown to increase localized lamellipodia formation in the cell via the diffusion of actin from the CDRs to the lamellipodia. To further probe the influence of cell-substrate interactions on cell behavior and actin dynamics, a two dimensional system which introduces a dynamically changing, reversible and localized substrate stiffness environment is constructed. Cells are seeded on top of thin PDMS nano-membranes, and are capable of feeling through the thin layer, experiencing the stiffness of the polyacrylamide substrates below the nano-membrane. The membranes are carefully re-transplanted on top of other polyacrylamide substrates with differing stiffnesses. This reversible dynamic stiffness system is a novel approach which would help in the investigation of the influence of reversible dynamic stiffness environments on cell morphology, motility, proliferation and differentiation in various cells types.
30

Metabolic hormones and their receptors in obesity insulin, visfatin, and ASP /

MacLaren, Robin. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Medicine, Division of Experimental Medicine. Title from title page of PDF (viewed 2009/06/09). Includes bibliographical references.

Page generated in 0.0584 seconds