• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • Tagged with
  • 14
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mesure de vibrations par vision 3D / 3D vision vibration measurement

Durand-Texte, Thomas 11 January 2019 (has links)
La finalité de cette thèse est d’étudier la pertinence et les limites des méthodes de vision 3D couplées à une caméra ultra-rapide pour la mesure de champs vibratoires, sans contact et de manière synchrone, dans le domaine des fréquences associées à la vibro-acoustique. Un premier montage pseudo stéréoscopique, issu de la robotique, mobilisant un jeu de quatre miroirs afin de générer deux vues virtuelles à partir d’une seule caméra réelle, a été testé sur une plaque et un haut-parleur. Les résultats, validés par comparaison avec ceux obtenus avec un vibromètre laser, attestent de la pertinence de l’approche en dépit des contraintes liées aux éléments optiques. Dans une logique de simplification, trois autres montages ont alors été proposés et testés, permettant de concevoir deux techniques de mesure de vibration plein champ et une méthode itérative de rectification d’images (IRIs), adaptées au contexte. La méthode sans miroir utilise une ligne mathématique pour la triangulation et est fondamentalement adaptée à la mesure de vibrations mono-axiales d'objets globalement plans, affichant des déplacements non-répétables selon la normale de la surface ou selon un axe connu. La méthode à caméras asynchrones, quant à elle, utilise une caméra ultra-rapide et une caméra rapide, et permet la mesure de vibrations multi-axiales de phénomènes vibratoires 3D. Les résultats obtenus sur le capot d’une voiture et sur un haut-parleur attestent de son potentiel pour la caractérisation de panneaux ou le test qualité de fin de chaine d’assemblage de haut-parleurs par exemple. En conclusion, les trois protocoles de mesure et les résultats associés sont comparés afin de cibler leurs potentialités et limites respectives dans le contexte de la mesure de vibrations. / The objective of this Ph.D is to study the relevance and limits of 3D vision methods coupled to high-speed cameras and applied to non-contact synchronous vibration measurement, in the vibro-acoustic range of frequencies. A first pseudo stereoscopic set-up, taken from robotics, using a four-mirror adapter in order to generate two virtual viewpoints from a single real camera, has been tested on a plate and a loudspeaker. The results, validated by comparison with those obtained with a laser vibrometre, prove the relevance of the approach, despite some constraints related to the optical elements. In a logic of simplification, three other set-ups have then been proposed and tested, allowing designing two full-field vibration measurement techniques and a method for the Iterative Rectification of Images (IRIs), adapted to the context. The no-mirror method uses a mathematical line to triangulate positions and is basically suited to measure the single-axis vibrations of globally plane objects, displaying non-repeatable displacements along the normal of the surface or along a known axis. The asynchronous cameras technique requires a high-speed and an industrial camera used simultaneously to measure the multi-axis displacements of 3D vibratory phenomena. The results obtained on a car bonnet and a loudspeaker prove its potential to characterise large panels or to carry out end-of-line testing of loud-speakers for example. In conclusion, the three measurement protocols and the associated results are compared in order to assess their respective potentialities and limits in the context of vibration measurement.
12

Conception d'un imageur ultrasonore dans l'air pour la mesure des ondes basses-fréquences en surface du corps humain / Design of an airborne ultrasonic imaging system for the observation of low-frequency surface waves on the human body

Jeger-Madiot, Nathan 23 March 2017 (has links)
L'objectif des travaux présentés dans cette thèse est le développement d'un système d'imagerie ultrasonore fonctionnant dans l'air pour la mesure sans contact des mouvements vibratoires en surface du corps humain. L'étude des vibrations en surface de la peau ouvre plusieurs champs d'application. L'observation de la vitesse d'une onde de surface sur la peau à partir du film de propagation permet de caractériser l'élasticité de la couche superficielle ainsi que ses hétérogénéités. A partir de cette analyse, il est possible de détecter des objets cachés sur ou sous la peau, dans un objectif de sécurité. Une seconde application est l'observation des vibrations de surface engendrées par le battement cardiaque, la respiration et l'onde de pouls. La réalisation d'un premier dispositif monovoie a permis la mesure locale de vibrations de l'ordre de la dizaine de microns. A partir de ces premiers travaux, nous avons construit un imageur ultrasonore 2D dans l'air à haute cadence d'imagerie. Il est constitué d'un réseau carré de 256 microphones et de 12 émetteurs. La principale nouveauté de notre approche repose sur l'imagerie d'une surface spéculaire. En effet, la rugosité de la peau est négligeable comparée aux longueurs d'onde de travail, de l'ordre du centimètre pour limiter l'atténuation dans l'air. Pour répondre à cette contrainte, l'imagerie est réalisée à partir de la formation de voies émission/réception par synthèse d'ouverture en utilisant une émission séquentielle d'ondes sphériques. Après caractérisation du système, nous avons imagé la propagation d'une onde de surface sur un fantôme mimant le corps humain et l'interférence de cette onde avec un objet étranger. Une seconde version de l'imageur 2D, constituée de 36 émetteurs, a permis la mesure de la déformation du thorax lors du battement cardiaque ainsi que la propagation de l'onde de pouls au niveau de la carotide. / The aim of the work presented in this dissertation is to develop an airborne ultrasonic system for the contactless measurement of vibrations on the human body surface. The vibration study of the skin surface opens several application fields. The visualization of the surface wave velocity on the skin from the propagation movie allows to characterize the superficial layer elasticity as well as its heterogeneities. From this analysis, objects hidden on or under the skin can be detected for a security purpose. A second application is the observation of the surface vibrations generated by the heartbeat, respiration and pulse wave.The implementation of a first single-channel device allowed the local measurement of vibrations about ten microns order. From this initial work, we developed a 2D airborne ultrasonic imager with high frame rate. It is composed by a 256 microphones square array and by 12 piezoelectric transducers. The main innovation of our approach is the specular surface imaging. Indeed, the skin roughness is negligible compared to the working wavelength, of the centimeter order to limit the air attenuation. To resolve this issue, the imaging process is carried out with an emission/reception beamforming using synthetic aperture and achieved by a sequential emission of spherical waves.After the system characterization, we imaged the surface wave propagation on a phantom mimicking the human body and the interference between this wave and a foreign object. A second version of the 2D imager, composed by 36 emitters, was applied to measure the deformation of the thorax during the heartbeat as well as the pulse wave propagation in the carotid artery.
13

Contrôle temporel de la cavitation ultrasonore : application à la thrombolyse ultrasonore extracorporelle / Temporal control of ultrasound cavitation : application to extracorporeal ultrasound thrombolysis

Poizat, Adrien 11 February 2016 (has links)
Les ultrasons focalisés permettent d’effectuer des traitements thérapeutiques ciblés dans le corps humain. Dans le domaine des applications cardiovasculaires, ils permettent de détruire des caillots sanguins susceptibles de se former dans le système vasculaire. Dans ce cas, les mécanismes de thrombolyse sont largement liés à la cavitation ultrasonore, dont la dynamique complexe reste un obstacle à l’élaboration d’un dispositif thérapeutique. Dans le cadre de cette thèse, un système permettant le contrôle temporel de l’activité de cavitation en régime pulsé a été développé puis caractérisé. Ce dispositif utilise un transducteur focalisé et un hydrophone avec une boucle de rétroaction pour réguler l’activité de cavitation. Alors qu’en régime non régulé l’activité de cavitation a un caractère très aléatoire, le système de régulation mis au point permet d’atteindre un niveau de cavitation souhaité de manière très reproductible et avec une bonne stabilité temporelle. L’application de ce dispositif à la thrombolyse ultrasonore a été testée in vitro sur des caillots de sang humain. Au dispositif précédent a été ajouté un système permettant de déplacer le caillot sanguin au niveau du foyer, ainsi qu’un conduit permettant de compter le nombre de fragments libérés par la destruction du caillot. En comparaison des essais en régime non régulé, les essais en régime régulé ont montré une excellente efficacité thrombolytique et une très bonne reproductibilité, tout en diminuant les intensités acoustiques utilisées pour lyser les caillots sanguins. En parallèle des essais in vitro, une campagne de thrombolyse ultrasonore in vivo a été mise en place afin de réaliser des essais sur un modèle animal d’ischémie aiguë de membre inférieur. Un dispositif ultrasonore extracorporel in vivo guidé par échographie et monté sur un bras robotisé 6 axes a été développé. Un modèle ovin de thrombose artérielle a également été développé. Les tests ont permis de valider, d’une part, la faisabilité du modèle de caillot artériel et, d’autre part, le concept de thrombolyse extracorporelle purement ultrasonore basée sur la cavitation inertielle régulée / Focused ultrasound can be used for therapeutic applications in the human body. In cardiovascular applications, they can destroy blood clots formed in the vascular system. In this case, thrombolysis mechanisms are related to ultrasonic cavitation, but the complex dynamics remains an obstacle to the development of a therapeutic device. In this thesis, a system for the temporal control of the pulsed cavitation activity has been developed and characterized. This device uses a focused transducer and a hydrophone with a feedback loop for regulating the cavitation activity. While cavitation activity has a random behaviour in non-regulated conditions, the control system developed achieves a desired level of cavitation with very reproducibly and with good temporal stability. The application of this device to the ultrasound thrombolysis was tested in vitro on human blood clots. In the previous device was added a system for moving the blood clot at the focal point, and a tube for counting the number of fragments released by the destruction of the clot. In comparison to uncontrolled regime, tests showed an excellent thrombolytic efficacy and a very good reproducibility, with reduced acoustic intensities. In parallel to the in vitro tests, ultrasound thrombolysis was tested in vivo on an animal model of acute limb ischemia. An extracorporeal ultrasound device, guided by ultrasound and mounted on a robotic arm, has been developed for in vivo investigation. An ovine model of arterial thrombosis has also been developed. Tests were used to validate the feasibility of the model of arterial clots and to validate in vivo the concept of purely ultrasonic extracorporeal thrombolysis based on inertial cavitation regulation system
14

Tissue harmonic reduction : application to ultrasound contrast harmonic imaging / Imagerie ultrasonore non linéaire : réduction des harmoniques tissulaire en imagerie de contraste

Pašović, Mirza 11 May 2010 (has links)
Les agents de contraste sont de petites bulles qui répondent non linéairement lorsqu’ils sont exposés à ultrasons. La réponse non-linéaire donne la possibilité d’images échographiques harmoniques qui a beaucoup d’avantages sur l’imagerie fondamentale. Toutefois, afin d’accroître l’échographie de contraste d’imagerie harmonique de performance nous devons d’abord comprendre la propagation non linéaire d’ultrasons. La non-linéarité du milieu déforme l’onde qui se propage, tels que les harmoniques commencent à se développer. La théorie qui a été prévue est la mise en œuvre, qui a permis une nouvelle méthode de modélisation de propagation des ultrasons non-linéaire. La connaissance acquise au cours de ce processus a été utilisée pour construire un deuxième signal à composantes multiples pour la réduction des harmoniques générées en raison des non-linéarités des tissus. En conséquence, la détection d’agents de contraste ultrasonore aux harmoniques a été augmentée. Une puissante technique d’imagerie échographique (Pulse inversion) a été renforcée avec le deuxième signal pour la réduction des harmoniques. Qu’est-ce qui a été appris pendant l’investigation : le pulse inversion technique a donné une nouvelle phase codée, appelée inversion de seconde harmonique. En outre, il a été noté que pour différents types de médias le niveau de distorsion de l’impulsion à ultrasons est différent. Cela dépend en grande partie du paramètre non linéaire B / A. Les travaux sur ce paramètre n’a pas été fini, mais il est quand même important de continuer dans cette direction puisque B / A imagerie avec des agents de contraste ultrasonore a beaucoup de potentiel. / Ultrasound contrast agents are small micro bubbles that respond nonlinearly when exposed to ultrasound wave. The nonlinear response gives possibility of harmonic ultrasound images which has many advantages over fundamental imaging. However, to increase ultrasound contrast harmonic imaging performance we must first understand nonlinear propagation of ultrasound wave. Nonlinear propagation distorts the propagating wave such that higher harmonics appear as the wave is propagating. The theory that was laid down, was allowed implementing a new method of modelling nonlinear ultrasound propagation. The knowledge obtained during this process was used to construct a multiple component second harmonic reduction signal for reduction of their harmonics generated due to the tissue nonlinearities. As a consequence detection of ultrasound contrast agents at higher harmonics was increased. Further more, a powerful ultrasound imaging technique called Pulse Inversion, was further enhanced with multiple component second harmonic reduction signal. What was learned during investigation of the Pulse Inversion, technique lead to a new phase coded ultrasound contrast harmonic method called second harmonic inversion;. Also it was noted that for different type of media the level of distortion of ultrasound pulse is different. It depends largely on the nonlinear parameter B / A. Although the work on this parameter has not been finished it is very important to continue in this direction since B / A imaging with ultrasound contrast agents has a lot of potential.

Page generated in 0.0167 seconds