1 |
Surface segregation of As during the epitaxial growth of SiHartell, Antony Douglas January 2003 (has links)
No description available.
|
2 |
The preparation of encapsulated flouride anion in T8 silsesquioxane cagesPourny, Manuel January 2005 (has links)
No description available.
|
3 |
Optical second harmonic generation studies of Si/SiGe structures and electrochemical oxidation of SiLevitt, James Alan January 2005 (has links)
No description available.
|
4 |
Understanding molecular interactions in the precipitation and dissolution of silica under ambient conditionsTilburey, Graham E. January 2007 (has links)
No description available.
|
5 |
Novel synthetic route for the creation of a newly formed zeolite materialPrendergast, Cathal Francis January 2008 (has links)
The synthesis of silica by sol-gel mineralization of cellulose nanorod nematic suspensions under a magnetic field gradient was investigated. The formation of a crystalline material has been found to have direct relation to the presence of a magnetic field gradient, coupled with the additional influence of an efficiently mixed system. This 'perfect' mixing occurs by the self stimulated vortex flow generated in far-from-equilibrium conditions. The vortex mixing undergoes vectorial motion that is amplified and governed by a magnetic field gradient.
|
6 |
Ανάπτυξη θερμομονωτικών και καταλυτικών υλικών με δομή αεροπηκτώματοςΟικονομόπουλος, Ευάγγελος 08 September 2010 (has links)
- / -
|
7 |
Growth and Characterization of Thin MoS2 Layers by CVDNordheim, Gregor 24 June 2024 (has links)
The contribution describes the construction of a CVD system, the deposition of thin molybdenum disulphide layers using this system and the analysis of the samples produced. The deposition of thin molybdenum disulphide layers and an intercalation of the silicon carbide substrate used were demonstrated and the measurement results obtained by atomic force microscopy and photoelectron spectroscopy were further discussed.
|
8 |
Designing Stimuli-Responsive Porous Silica Materials using Solid Lipid Nanoparticles (SLN) and Magneto-responsive Surfactants for Delivery of Curcumin / Conception de matériaux poreux silicatés stimuli-responsive en utilisant des nanoparticules lipidiques solides (SLN) et tensioactifs magnétiques pour la vectorisation de la curcumineKim, Sanghoon 28 October 2015 (has links)
Ce travail a consisté à préparer des matériaux silicatés poreux à caractère stimuli-sensible à base de nanoparticules lipidiques solides (SLN) et de tensioactifs magnétiques. Plusieurs systèmes à base de tensioactifs ont été utilisés afin de synthétiser des matériaux silicatés à porosité contrôlée en utilisant des méthodes décrites dans la littérature ou mises au point au laboratoire. De différents caractères stimuli-sensible ont été introduits dans les matériaux silicatés poreux en fonction de système utilisé: les nanoparticules lipidiques solides (SLN) pour les matériaux sensible au pH et les tensioactifs magnétiques pour les matériaux sensible au champ magnétique. Premièrement, les matériaux à base de nanoparticules lipidiques solides (SLN) ont été utilisés pour la vectorisation d’un principe actif, la curcumine. La libération de la curcumine a été contrôlée en fonction de pH. Un revêtement sur la surface silice a été également employé pour mieux contrôler la libération de la curcumine. D’autre part, la sensibilité au champ magnétique a été introduite dans des silices mésoporeuses en utilisant des tensioactifs magnétiques. Leurs propriétés d’auto-assemblage (i.e. micelles, vésicules) ont été mise en évidence. Ainsi, la synthèse de matériaux silicatés poreux à caractère magnétique-sensible a été effectuées en utilisant ces tensioactifs. Enfin, les SLN magnétiques ont été préparés en combinant les SLN avec un tensioactif magnétique, qui ont été servi pour la synthèse de catalyseur à base de la silice méso-macroporeuse dopée en nanoparticules d’oxyde de fer / This work is to prepare stimuli-responsive porous silica materials based on solid lipid nanoparticles (SLN) and magnetic surfactants. To develop this study, several surfactants systems were used to synthesize silica materials with controlled porosity via protocols described in the literature or developed in the laboratory. Different stimuli-responsive characters were introduced in porous silica materials as a function of system used: solid lipid nanoparticles (SLN) for pH-sensitive and magnetic-sensitive surfactants for magnetic silica materials. First, the materials synthesized with solid lipid nanoparticles (SLN) were used for the delivery of an anti-carcinogenic drug, curcumin. A coating method on silica surface was also used to better control the release of curcumin. Secondly, the responsiveness to the magnetic field was introduced in silica materials using the magnetic surfactants. Their self-assembly properties (i.e. micelles, vesicles) were studied and their applications in the synthesis of magnetic porous silica materials were investigated. Finally, the magnetic solid lipid nanoparticles have been prepared by combining SLN with magnetic surfactants, which have been used for the synthesis of meso-macroporous silica catalyst encapsulating iron oxide nanoparticles.
|
9 |
Processus contrôlant la distribution des isotopes du silicium dissous (δ30Si) dans l'océan Atlantique et Indien / Processes controlling the distribution of dissolved silicon isotopes (δ30Si) in the Atlantic and the Southern OceanCoffineau, Nathalie 13 December 2013 (has links)
L'utilisation des isotopes du silicium (δ30Si) comme proxy paléocéanographique nécessite une bonne connaissance de la répartition et du devenir des isotopes du silicium à travers l'océan. Au cours des dernières années, des efforts considérables ont été faits pour cartographier la composition isotopique du silicium dissous (acide silicique, DSi) et de la silice biogénique (BSi) dans l'océan. Les diatomées utilisent le DSi pour construire leur frustule fait d’opale (BSi). Durant ce processus, les diatomées discriminent l'isotope lourd de silicium (30Si) en faveur de l'isotope léger (28Si). Ce fractionnement conduit à une BSi qui a un δ30Si inférieur de 1,1 ‰ à 1,5 ‰ par rapport au DSi source. Cela se traduit dans les eaux de surface par de faibles concentrations en DSi en raison de l'utilisation biologique et par des valeurs de δ30Si élevées en raison de la distillation de Rayleigh. Inversement, lorsque la BSi se dissout, il y a une discrimination contre l’isotope lourd et ainsi produit du silicium dissous avec un δ30Si inférieur de 0,55 ‰. Dans le même temps, la circulation océanique et le mélange vertical contribuent à modifier le δ30Si du pool de silicium dissous dans la couche de surface, ce qui complique l'utilisation du δ30Si des diatomées comme proxy pour l’utilisation du DSi durant la saison de croissance. Cette thèse vise à mieux comprendre les processus qui régissent le cycle du silicium et la signature en δ30Si des masses d'eau dans les différentes régions de l'océan. De nouvelles données de δ30Si de silicium dissous sont présentées et discutées. Ces données proviennent de 6 profiles CTD de la campagne ANTXXIII/9 (Atlantique et secteur indien de l'océan Austral), 7 profiles CTD de la campagne ANTXXIV/3 (secteur Atlantique de l'océan Austral), et 5 profiles CTD de la campagne MSM10/1 (région subtropical et tropical de l’océan Atlantique nord). Les échantillons ont été purifiés par chromatographie échangeuse d'ions après préconcentration par précipitation de Mg(OH)2, et le silicium est extrait en utilisant du triéthylamine molybdate. Les analyses isotopiques ont été réalisées sur Spectromètre de Masse Multi-Collection à source Plasma (MC-ICP-MS, Naptune) à moyenne résolution (Ifremer, Brest). / Use of silicon isotopes (δ30Si) as a paleoceanographic proxy requires sound knowledge of the distribution and behaviour of silicon isotopes throughout the ocean. Over the past few years considerable effort has been made to map the silicon isotope composition (δ30Si) of silicic acid (dissolved silicon, DSi) and biogenic silica (BSi) throughout the ocean. Diatoms uptake DSi to build up their opal frustules (BSi). During this process, diatoms discriminate against the heavier isotope of silicon (30Si) in favor of the light isotope (28Si). This fractionation leads to BSi that has a lower δ30Si than the DSi source by 1.1 ‰ to 1.5 ‰. In turn, this results in surface waters with low DSi concentrations due to biological removal, and high δ30Si values due to Rayleigh distillation. Conversely, when the BSi dissolves it is with discrimination against the heavier isotope producing dissolved silicon with a δ30Si lower by 0.55 ‰. At the same time, episodes of upwelling occurring throughout the growing season, ocean circulation and mixing, contribute to modify the δ30Si of the dissolved silicon pool in the surface mixed layer, which complicate the use of diatom δ30Si as a proxy for DSi removal during the growing season. This dissertation aims to better understand the processes driving the Si cycle and the δ30Si signature of water masses in different regions of the ocean. New data of δ30Si of dissolved Si are presented and discussed. These data come from 6 CTD profiles from ANTXXIII/9 campaign (Atlantic and Indian sector of the Southern Ocean), 7 CTD profiles from ANTXXIV/3 (Atlantic sector of the Southern Ocean), and 5 CTD profiles from the campaign MSM10/1 (north Subtropical and Tropical Atlantic Ocean). Samples were purified by ion-exchange chromatography following preconcentration via Mg(OH)2 precipitation and extraction of silicon using triethylamine molybdate. Isotopic analyses were carried on a Neptune MC-ICP-MS at medium resolution (Ifremer, Brest).
|
Page generated in 0.0208 seconds