• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d’une approche multi-échelle pour l'étude de la solubilité des flavonoïdes et leur assemblage avec les polymères / Development of a multi-scale approach to study flavonoids solubility and their assembly with polymers

Slimane, Manel 15 December 2017 (has links)
Depuis quelques décennies, les flavonoïdes sont de plus en plus utilisés dans différents domaines d’applications alimentaires et non alimentaires. Cet engouement est dû principalement à leurs activités antioxydantes. Cependant, la solubilisation, la dispersion et la stabilisation de ces molécules sont variables et constituent un frein à leur utilisation. L’objectif de ce travail est de pallier cet inconvénient en visant à comprendre les interactions entre ces composés et leur milieu en absence et en présence de polymères, par une double approche expérimentale et par modélisation et mésomodélisation moléculaire. Dans un premier temps les interactions entre 3 flavonoïdes la quercétine et ses deux formes glycosilées la rutine et l’isoquercétine dans différents solvants organiques ont été étudiées. Les résultats obtenus (paramètre de Flory Huggins et fonction de la distribution radiale) ont montré que la partie B2 commune aux trois flavonoïdes avec des valeurs de paramètres de Flory Huggins proche de 0.5 dans le M2B2 et plus importantes dans l’acétonitrile est la responsable du comportement des flavonoïdes dans le solvant. Les simulations par DDFT ont montré une agrégation de la quercétine dans le M2B2 contre une dispersion dans l’acétonitrile. Toutes ces observations ont été validées expérimentalement (étude de la solubilité et observations microscopiques). Dans un deuxième temps on a étudié la quercétine en présence d’un bioploymère le PLGA dans l’eau. Des nanoparticules ont été formées en variant la concentration des différents composés et le ratio acide lactique / acide glycolique du PLGA. Les méthodes de la modélisation moléculaire et de la mésomodélisation (calcul du paramètre de solubilité par dynamique moléculaire et observation de la dispersion ou de la séparation de phase par DDFT) ainsi que l’approche expérimentale (DSC, MET …) nous ont menées à la même constatation. En effet la taille des particules augmente avec la concentration du PLGA et le taux d’acide lactique dans le polymère. Aussi la concentration de l’émulsifiant dans le milieu joue un rôle important dans la formation d’agrégats PLGA-Q. Plus sa concentration est importante, plus la formation des particules est difficile comme il joue un rôle sur la viscosité du milieu et par conséquence la diffusivité des molécules dans l’eau. Tous les résultats obtenus par modélisation moléculaire et par mésomodélisation ont été validés expérimentalement. On peut donc conclure que la méthodologie adoptée en simulation peut constituer un outil d’aide à la prédiction du comportement des flavonoïdes / Over the past few decades, flavonoids have become increasingly used in different food and non-food applications due to their important antioxidant activities. However, the solubilization, dispersion and stabilization of these molecules are variable and constitute a brake on their use in different formulations. The objective of this work is to overcome those limitations by understanding the interactions between these compounds and their environment without and with the add of polymers, by a multi-scale approach approach (molecular modeling and mesoscale modeling and experimental study). Initially, interactions between 3 flavonoids (quercetin, rutin and isoquercetin) in various organic solvents, were studied. The obtained results (mainly Flory Huggins parameter and radial distribution function RDF) showed that the B2 part common to the three flavonoids (For example Flory Huggins parameter values were close to 0.5 in the M2B2 and much more important in acetonitrile) is responsible for the miscibility behavior of the flavonoids in the solvent. DDFT simulations showed aggregation of quercetin in M2B2 against dispersion in acetonitrile. All these observations were confirmed experimentally (study of solubility and microscopic observations). Then, quercetin was studied in the presence of a biopolymer, PLGA in water. Nanoparticles were formed by varying the concentration of the various compounds and the lactic acid / glycolic acid ratio in the PLGA. The tools of molecular modeling and mesoscale modeling (calculation of the solubility parameter by molecular dynamics and observation of the dispersion or the phase separation by DDFT) as well as the experimental approach (DSC, MET ...) led us to the same conclusions. Indeed, the particle size increases with the concentration of PLGA and the rate of lactic acid in the polymer. Also the concentration of the emulsifier in the medium has an important role in the formation of PLGA-Q aggregates. The higher its concentration, the more difficult the formation of the particles as it affects the viscosity of the medium and consequently the diffusivity of the molecules in the water. All the results obtained by molecular modeling and by mesoscale modeling have been confirmed experimentally. We can therefore conclude that the methodology adopted in the simulations can be considered as a tool to help on predicting the behavior of flavonoids in different medium
2

Étude cinétique et modélisation des effets des traitements thermiques et de l’environnement physico-chimique sur la dégradation et l’activité antioxydante des flavonoïdes / Kinetic study and modeling of the effects of heat treatments and physical-chemical environment on the antioxidant activity of flavonoids and their derivatives

Chaaban, Hind 20 June 2017 (has links)
Les objectifs de cette thèse sont d’une part d'étudier les effets d’un traitement thermique et de l’environnement physico-chimique sur la stabilité de 6 flavonoïdes de structure différente et sur l'évolution de leur activité anti-oxydante. Les conditions du traitement thermique ont été les suivantes : (i) chauffage dans des conditions isothermes durant 2h pour des températures allant de 30 à 130°C et (ii) chauffage dans des conditions non isothermes par microcalorimétrie (de 30 à 130°C, 4°C/ heure). Les flavonoïdes ont été solubilisés dans de l’eau. Nous avons constaté que les flavonoïdes glycosylés sont plus résistants que les flavonoïdes aglycones. Les énergies d'activation de dégradation calculées dépendent aussi de la structure du flavonoïde. Pour se dégrader, les flavonoïdes glycosylés ont besoin d’une énergie élevée par rapport à la forme aglycone. L’exposition à la lumière a été réalisée durant 15 jours avec et sans oxygène, le témoin de l’expérience étant un stockage à l’obscurité avec et sans oxygène. La dégradation des flavonoïdes est influencée par la présence de lumière et par la quantité d'oxygène. Les molécules ont une sensibilité différente en fonction de leur structure, le classement suivant est obtenu d’après : naringine, ériodictyol puis rutine, lutéoline, lutéoline 7-O-glucoside et enfin le mesquitol. En effet, la présence d'un groupe hydroxyle en position 3 et une double liaison C2-C3 diminue la stabilité des flavonoïdes. En outre, il a été observé que, malgré la dégradation totale de certains flavonoïdes par le traitement thermique et l’environnement physico-chimique, les solutions traitées conservent une activité anti-oxydante / The objectives of this thesis are to study the effects of a heat treatment and the physicochemical environment on the stability of 6 flavonoids of different structure and on the evolution of their antioxidant activity. The heat treatment conditions were as follows: (i) heating under isothermal conditions for 2 h at temperatures ranging from 30 to 130 ° C and (ii) heating under non-isothermal conditions by microcalorimetry (30 to 130 ° C, 4 ° C / hour). The flavonoids were solubilized in water. We found that the glycosylated flavonoids are more resistant than the aglyconic flavonoids. The calculated degradation activation energies also depend on the structure of the flavonoid. To degrade, glycosylated flavonoids require high energy relative to the aglycone form. Exposure to light was carried out for 15 days with and without oxygen, the experimental control being a dark storage with and without oxygen. The degradation of flavonoids is influenced by the presence of light and by the amount of oxygen. The molecules have a different sensitivity according to their structure, the following classification is obtained according to: naringine, ériodictyol then rutin, luteolin, luteolin 7-O-glucoside and finally the mesquitol. Indeed, the presence of a hydroxyl group at position 3 and a C2-C3 double bond reduces the stability of the flavonoids. Furthermore, it has been observed that, despite the total degradation of certain flavonoids by the heat treatment and the physical-chemical environment, the treated solutions retain an antioxidant activity
3

Optimisation de l’extraction des caroténoïdes à partir du persimmon (Diospyros kaki L.), de l’abricot (Prunus armeniaca L.) et de la pêche (Prunus persica L.) : étude photophysique en vue d’une application en thérapie photodynamique (PDT) / Optimization of carotenoids extraction from persimmon (Diospyros kaki L.), apricot (Prunus armeniaca L.) and peach (Prunus persica L.) : Photophysical study for photodynamic therapy (PDT) application

Zaghdoudi, Khalil 17 December 2015 (has links)
La thérapie photodynamique (PDT) est une technique utilisée cliniquement pour traiter certaines maladies de la peau, la dégénérescence maculaire liée à l’âge et certains types de cancer. Elle fait intervenir trois composants : une molécule photosensible ou photosensibilisateur (PS), la lumière et l’oxygène. Après administration du PS, celui-ci va se localiser plus ou moins sélectivement dans les zones tumorales où il est alors activé par irradiation lumineuse à une longueur d’onde et une puissance données. Ceci engendre la formation d’espèces réactives de l’oxygène (ROS) très réactives, dont l'oxygène singulet1 O2, qui entraînent la destruction des tissus tumoraux par nécrose ou apoptose. Afin d’améliorer la sélectivité du traitement, différentes pistes sont actuellement exploitées dont l’élaboration de « photodynamic molecular beacons » (PMB). Dans un PMB, le photosensibilisateur (PS) est associé via un peptide à un inhibiteur 1O2, appelé quencher. Ce quencher inhibe la formation d’1O2 tant que le composé n’a pas atteint sa cible. Une fois la zone cancéreuse atteinte, des enzymes spécifiques clivent le peptide, libérant ainsi le PS qui retrouve alors sa capacité à former de l’1O2. Trouver un couple PS/quencher adéquat reste un challenge en PDT. Les propriétés photophysiques particulières des caroténoïdes et leur aptitude à inhiber la production d’1O2 font de ces derniers des quenchers potentiellement utilisables pour l’élaboration de PMBs. Chez les plantes, les caroténoïdes (carotènes et xanthophylles) sont des pigments associés à la photosynthèse, qui ont deux rôles principaux : un rôle de collecteur de lumière et un rôle photoprotecteur en protégeant le(s) système(s) photosynthétique(s) contre les dommages photooxydatifs liés à une exposition trop intense à la lumière. Ceci s’opère, entre autre, via le cycle des xanthophylles. Cette aptitude à capter de l’énergie présente un intérêt potentiel à ne pas négliger dans la perspective de la conception de PMB utilisables en thérapie photodynamique. Dans le cadre de cette thèse en co-tutelle avec la Faculté des Sciences de Bizerte nous avons ciblé les caroténoïdes présents dans trois fruits produits en Tunisie à savoir les kakis (Diospyros kaki L.), les abricots (Prunus armeniaca L.) et les pêches (Prunus persica L.) connus pour leur richesse globale en ces pigments. Divers procédés d’extractions ont été étudiés : (i) L’extraction de type Soxhlet par solvants organiques à pression atmosphérique, utilisée comme référence, (ii) l'extraction accélérée par solvant organique (ASE : Accelerated solvent Extraction) effectuée sous pression, enfin (iii) l'extraction par CO2 supercritique avec l’éthanol comme cosolvant. Pour ces deux derniers procédés, une approche par plan d’expériences (surfaces de réponses) a été utilisée pour identifier les facteurs clé et les conditions optimales d’extractions de divers caroténoïdes (pression, température, débit, % de cosolvant, temps, nombre de cycles). L'analyse par chromatographie liquide à haute performance couplée à la détection UV-Visible et à la spectrométrie de masse a ensuite permis l'identification et la quantification des caroténoïdes présents dans les extraits obtenus, permettant ainsi de comparer les profils caroténoïdiques propres à chaque fruit et les performances de chaque procédé d’extraction. Cette étude ayant révélé un profil caroténoïdique particulièrement intéressant chez le kaki par rapport aux autres fruits, une extraction et une purification des caroténoïdes de ce fruit par chromatographie liquide haute pression préparative a ensuite été effectuée afin de disposer d’une quantité suffisante de chaque caroténoïde, et parfois de leurs isomères conformationnels, en vue de l’étude de leurs propriétés photophysiques (absorption, émission de fluorescence, inhibition d’1O2) et de l’évaluation de leur intérêt potentiel en tant que quencher d’1O2 dans un édifice de type PMB / Photodynamic therapy (PDT) is a clinically used technique for treating skin diseases, age-relatedmacular degeneration but mainly some types of cancer. PDT involves three components: a photosensitive molecule named photosensitizer (PS), light and oxygen. After administration of the PS, this one will be located more or less selectively in tumoral regions where it is activated by light irradiation at appropriate wavelength and power. This leads to the formation of highly reactive and cytotoxic reactive oxygen species (ROS), especially singlet oxygen, resulting in the destruction of the tumor by necrosis or apoptosis. To improve the treatment selectivity, different strategies are being exploited, one of which is the development of "photodynamic molecular beacons" (PMB). In PMB the photosensitizer is linked via a peptide to an inhibitor of 1O2 (quencher). This quencher inhibits the formation of 1O2 as long as the compound has not reached its target, namely cancer cells. In order to inhibit the toxicity of the PS in non-target cells and restore toxicity only close to the biological target, it is necessary to find an adequate PS/quencher couple. This remains a challenge for PDT. Carotenoids are interesting candidates due to their specific photophysical properties and ability to inhibit 1O2, which makes them potential quenchers for building PMBs. In plants, carotenoids (carotenes and xanthophylls) are pigments involved in the photosynthesis, in which they play two main roles: a light collecting role and a protecting role by preserving the photosynthetic systems against photoxydative damages induced by a too intense light exposure. This protection can for instance occur via the well-known xanthophylls cycle. This capacity to catch energy presents a potential interest that should not be neglected in the framework of the design of PMBs usable in photodynamic therapy. Within the framework as part of this PhD thesis in Cotutelle with the Faculty of Sciences of Bizerte, we focused on carotenoids from three fruits produced in Tunisia: persimmon (Diospyros kaki L.), apricot (Prunus armeniaca L.) and peache (Prunus persica L.), known for their global richness in these natural pigments. Three extraction processes were investigated: (i) the Soxhlet extraction based on the use of organic solvent at atmospheric pressure and used as reference, (ii) the accelerated solvent extraction (ASE) using organic solvent under high pressure, and (iii) the supercritical fluid extraction (SFE) using supercritical CO2 and ethanol as cosolvent. For these two last processes, a design of experiments (Surface Response Design) was used to identify the key factors and optimal extraction conditions of various carotenoids (pressure, temperature, flow, % cosolvent, time, number of cycles). Then, HPLC-PDA coupled with mass spectrometry (MS) enabled the identification and quantification of carotenoids from the extracts. Thus it was possible to compare the profiles in carotenoids content from each fruit as well as the performances of each extraction process. This study showed that the carotenoidic profile in the persimmon was the most interesting as compared to the profiles in the two other fruits. Extraction and purification of the carotenoids from persimmon by preparative high pressure liquid chromatography were then performed in order to have a sufficient amount of each carotenoid and sometimes of their conformational isomers. We finally performed a study of their photophysical properties (absorption, fluorescence emission, 1O2 inhibition) in order to evaluate their potential as 1O2 quencher in molecular construction such as a PMB

Page generated in 0.0334 seconds