• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 82
  • 67
  • 54
  • 46
  • 37
  • 35
  • 16
  • 9
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1270
  • 321
  • 173
  • 134
  • 126
  • 112
  • 107
  • 104
  • 91
  • 85
  • 73
  • 70
  • 70
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

The Globular Cluster System of NGC 5128

Woodley, Kristin 10 1900 (has links)
<p> The globular cluster system of a nearby giant elliptical galaxy, NGC 5128 is studied to place constraints on the formation history of the galaxy. In this thesis, we have identified 190 new globular clusters via radial velocity measurements, bringing the total known population of globular clusters to 605 within this galaxy. We have examined the colour and spatial distributions of the globular cluster system and find it is bimodal in colour, with both a red and blue globular cluster population. The blue population is more spatially extended than the red, and both populations fall off in number density with radius as a power-law. There is a clear lack of globular clusters along the isophotal minor axis of the galaxy beyond a galactocentric radius of 15' warranting further search. With this new dataset, we have measured the ages, metallicities, and formation timescales for 72 globular clusters. The spectroscopic metallicity distribution function is bimodal indicating there is a metal-rich and metal-poor globular cluster population that corresponds to the red and blue globular clusters, respectively. We find the majority of both metal-rich (56%) and metal-poor (92%) globular clusters are older than 8 Gyr, comparable to the Milky Way globular cluster system. We do find a smaller fraction, 18% of our sample, are metal-rich globular clusters with ages younger than 5 Gyr, while the remaining globular clusters have intermediate ages between 5 -8 Gyr. The formation times of these globular clusters, estimated by their alpha-to-iron abundance ratios, indicate they formed quickly, on a timescale similar to globular clusters in most spiral galaxies, but on slower timescales than those in some other giant elliptical galaxies. The kinematics of the full globular cluster system is analyzed, as well as for the metal-rich and metal-poor globular clusters separately, as a function of galactocentric radius. We find the metal-poor globular cluster system has a small rotation signature of 17±14 km s-1 around no clearly defined axis and its dynamics are dominated by dispersion. The metal-rich globular cluster system has a mild rotation of 41 ± 15 km s-1 about the galaxy's isophotal major axis, following the rotation of a representative field star population, the planetary nebulae. The motion of the metal-rich globular cluster system is also dominated by random motion. We estimate the mass of the galaxy to be (5.5 ± 1.9) x 1011 with a mass-to-light ratio of 15.35 M0 /L80 using the globular cluster M0 population out to 20'. This estimate places NGC 5128 on a mass scale similar to other giant elliptical galaxies. The evidence collected suggests that NGC 5128 formed in a hierarchical scenario, gradually building up larger structure from smaller protogalaxies at early times in the history of the Universe. The group environment of NGC 5128 may have prolonged star formation within the galaxy as well, enabling a small spread in the old ages of globular clusters and also slowing the formation timescales compared to globular clusters in other giant elliptical galaxies. Results from this thesis also support more recent accretions in the history of NGC 5128, building up the more metal-rich and young globular clusters, which have a different rotation axis than the rest of the population. </p> / Thesis / Doctor of Philosophy (PhD)
422

Analysis of Algorithms for Star Bicoloring and Related Problems

Jones, Jeffrey S. 25 August 2015 (has links)
No description available.
423

A 6-Year Study of Long Period Variable Stars in the Globular Cluster NGC 6388

Aljassim, Mohammad A. 02 August 2017 (has links)
No description available.
424

Stellar Populations in Nearby Merging Galaxies

Mulia, Alexander John January 2015 (has links)
No description available.
425

Elliptical instability of compressible flow and dissipation in rocky planets for strong tidal forcing

Clausen, Niels 16 December 2015 (has links)
No description available.
426

A Study of AGN and their environments in the far-infrared

Cao Orjales, Jose Manuel January 2014 (has links)
My Ph.D. has been composed of work involving the use of far–IR and submm observations of AGN. During this time it has focused on the in- terplay between AGN and their host galaxies and cluster environments. Understanding the role of AGN, and how they affect the evolution of both their host galaxies and surrounding environments, is a pressing concern in cosmological models of the universe, affecting as they do the chemical makeup, star formation rate, and morphology of their host galaxies. In Chapter 2, we focus on attempting to determine whether there is an inherent physical difference between Broad Absorption Line Quasars and non–BAL QSOs using Herschel observations taken at 250, 350 and 500 μm as part of the H–ATLAS (Eales et al. 2010) survey. BAL QSOs have been considered the most visible form of AGN feedback, and therefore are a prime starting point for understanding how galaxy evolution may be affected by the presence of an AGN. By using matched samples of 50 BAL and 329 non–BAL QSOs, we create weighted stacks at each wavelength, finding similar far–IR flux–densities for each sample within the errors. By SED modelling using a simple modified black body (Hildebrand 1983) fit to Mrk 231 and IZw1, we derive likely upper and lower limits for the BAL and non–BAL QSOs in each wavelength, again finding they are consistent within the errors. A bevy of statistical tests run on either population similarly finds no evidence to reject the null hypothesis they are drawn from the same parent population. These results would imply that HiBAL QSOs can be unified with ordinary QSOs within a simple orientation dependent scheme. We cannot make the same distinction for LoBALs or FeLoBALs, which the literature suggests may well be a separate evolutionary phase. In Chapter 3, we determine whether the presence of an AGN correlates to an overdensity of star–forming galaxies in the FIR, as has been found at shorter wavelengths (Falder et al. 2010). For the SHAGs study, 171 AGN were observed and selected at z∼1. By using observations at 250 μm, we are able to trace close to the peak of the grey–body SED created by reprocessing by dust of radiation from young O and B stars. Following data reduction, we determine number counts and correct for completeness within a 1Mpc radius of the central AGN. We find an overdensity on the order of around 0.4 sources per AGN, implying a degree of activity already significantly lower than at higher redshifts. This overdensity appears to be somewhat different between RL AGN and RQQ within 1Mpc. A cor- relation is found between radio luminosity and star formation overdensity, consistent with a stronger dependence found by Falder et al. (2010) at 3.6 μm, and there also appears to be a correlation between stellar mass and star formation overdensity for radio–loud QSOs. The galaxies in the environs of the AGN have LIRG–level luminosities, and are likely the pro- genitors of modern day S0 galaxies, whose population increases steadily from z∼1 to the present day (Postman et al. 2005; Smith et al. 2005). Our work with SCUBA–2, presented in Chapter 4, follows on from a prior sample of X–ray–absorbed QSOs (Stevens et al. 2005). This new sample is composed of more highly–absorbed X–ray QSOs and covers a larger area than the initial sample, so is ideal for an analysis of source counts around AGN at high–redshift. Data from the JCMT have been reduced, and completeness corrections and flux corrections applied to catalogues to determine the number counts around AGN. A comparison background, created using data from the Cosmology Legacy Survey has been used to derive comparison counts. The AGN have been investigated, yet none are detected above 3 at 850 μm, in contrast to the original sample. This may suggest that star formation in their host galaxies has been suppressed. Upon stacking in redshift and BAL classification, no difference in flux– density is apparent and the sources studied here have a similar stacked submm output to an unabsorbed QSO sample created for the original X– ray absorbed QSOs. However, over half of the sources here are BAL QSOs in contrast to the original absorbed QSO sample which contained only 1 BAL QSO. From the work in Chapter 2, one might expect BAL and non–BAL QSOs to have similar flux–densities. We argue that the sources studied in this thesis have likely undergone rapid evolution owing to a strong outflow, and as such star formation has been suppressed sufficiently that the submm emission is below the confusion noise. BAL winds may still be present, but essentially, the show is already over. A similar mechanism may already have occurred in unabsorbed QSOs if all QSOs pass through an X–ray–absorbed phase. With regard to source counts, we find that there is tentative evidence for an overdensity of sources around these AGN. The SFRs of the companion sources have been calculated using several greybody analogues, all of which imply a high degree of activity, suggesting these fields will evolve to become some of the most massive regions at the present epoch, in keeping with current theories of SMGs and high–redshift clusters.
427

Simulations of high mass star formation in the Milky Way

Neves, Joao Fernando Ciotta January 2013 (has links)
Massive star formation takes place in the dense cores of molecular clouds where the stars may be obscured at optical wavelengths. An excellent signpost of a massive young stellar object is the presence of an ultra-compact HII region (UCHii), which is a dense photo-ionised cocoon of gas surrounding the newly formed star. The aim of this project is to develop an assembly of numerical tools, caravela, that can simulate realistic data streams representing high-mass star forming regions in our Galaxy. The synthetic output consists in images and photometric point source catalogues, in the IRAS and Herschel wavebands. In an era when large observational surveys are increasingly important, this tool can produce simulated infrared point-source catalogues of high-mass star forming regions on a Galactic scale. The approach used is to construct a synthetic Galaxy of star-forming regions represented by SED templates. The star-forming regions are distributed randomly along a four spiral arm morphology, although a wide range of geometries can be used including rings and different numbers of spiral arms. The caravela code then observes the synthetic Galaxy to produce simulated images and point source catalogues with appropriate sensitivity and angular resolution. caravela was first used to model the simulated Galaxy by constraining the synthetic output to observations made by IRAS. This numerical tool will allow the user to infer physical properties of the Galactic population of high-mass star forming regions from such observations. Second, the selected model was again observed with caravela in Herschel mode. These are therefore predictive results for the future Herschel observations. A model with 4.0×104 compact proto-stars embedded in larger grey-body envelopes (with T = 40 K and linear size scale lIII = 5.0 × 106 AU) is the best-fit model to the IRAS observational data set studied. We found a level of contamination from low- and intermediate-mass objects of " 90%. The modelled data set resulting from the Herschel simulation resulted in the detection of approximately twice as many Herschel objects than IRAS, which is consistent, in a limited way, with the real observed companion clump fraction (CCF) of 0.90 ± 0.07 (Thompson et al., 2006) means that on average there were observed 2 sources per one IRAS source. Our caravela and the real observed CCF are therefore consistent. caravela was coupled with an independent diffuse emission model (Paladini et al., 2007) and the resulting analysis is presented as an interesting seed for the future.
428

The environments of active galaxies over cosmic time

Dodd, Elizabeth Frances January 2014 (has links)
The overall aim of this thesis is to investigate the environments of AGN, in particular, the density of galaxies in the environments of radio-loud and radio-quiet AGN. This determines whether AGN trace dense environments at high redshifts and whether the environments are important in addressing the problem of radio-loud dichotomy. I extend my research by investigating whether star-formation evolves differently in high-redshift AGN environments compared to the field. I begin by investigating the environments of 169 AGN using Spitzer data at z ∼ 1. I investigate the source density of star-forming galaxies in the environments of radio galaxies, radio-loud quasars and radio- quiet quasars. I do not find any significant overdensity of star-forming galaxies in these environments, although I find tentative evidence for a diff erence in the colours of galaxies in the radio galaxy environments compared to the quasar and field environments. I next use VIDEO data to investigate the environments of the quasars out to z ∼ 3. Firstly, I use a training sample of QSOs and galaxies, which trains a neural network to detect QSOs in the VIDEO data. I detect 274 possible QSOs in the VIDEO data using this method. I am able to determine that the efficiency of the neural network clas- sification is 95 per cent using the training sample. I compare these results to a colour selection method, which detects 88 QSOs in the VIDEO data, and find that the neural network is able to detect ∼ 80 per cent of the colour selected QSOs at Ks = 21. I then investigate the source overdensity using a radial analysis on the environments of the VIDEO QSOs. I find a significant overdensity of galaxies in the environments of the whole QSO sample and in the environments of the radio-loud quasars compared to the radio-quiet quasars. I extend the density analysis by using a second density measure, called the spatial clustering amplitude technique, to compare the environments of the quasars with their radio luminosities, absolute magnitudes and redshifts. I do not fi any significant correlations between environmental density and radio luminosity, absolute magnitude or redshift for the QSOs. I extend this research to investigate the type of galaxies found in the AGN environments. However, I do not find any significant differences between the type of galaxies found in the QSO environments and the background field.
429

Automorphisms generating disjoint Hamilton cycles in star graphs

Derakhshan, Parisa January 2015 (has links)
In the first part of the thesis we define an automorphism φn for each star graph Stn of degree n-1, which yields permutations of labels for the edges of Stn taken from the set of integers {1,..., [n/2c]}. By decomposing these permutations into permutation cycles, we are able to identify edge-disjoint Hamilton cycles that are automorphic images of a known two-labelled Hamilton cycle H1 2(n) in Stn. The search for edge-disjoint Hamilton cycles in star graphs is important for the design of interconnection network topologies in computer science. All our results improve on the known bounds for numbers of any kind of edge-disjoint Hamilton cycles in star graphs.
430

I am super jealous of all the little girls who get to see themselves be the hero of Star Wars : en studie om fandom och sekulär helighet

Altgård, Sara January 2016 (has links)
Finding something sacred in secular society is a relatively new field of religious studies. This thesis aims to find the secular sacred amongst Star Wars fans on the blogging platform Tumblr, in relation to Kim Knott and her theory of the secular sacred. I collected and studied 100 blog posts about Star Wars, specifically about one of its main characters, Rey. The research questions used were “How do fans of Star Wars and Rey express themselves on Tumblr?”, and “Could it be seen as sacred according to Kim Knott´s theory of secular sacred?” I analyzed the material with a hermeneutic approach, and using Kim Knott’s theory, I categorized the posts in to three categories: sacred, appreciative and sacrilegious. Even though the appreciative category was by far the largest, the results showed that a fifth of all the blog posts could be perceived as having content that could be seen as sacred to its poster. I came to the conclusion that my study supports the theory of sacredness not being exclusive to religious society, but can be found in the secular as well.

Page generated in 0.0367 seconds