• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 82
  • 67
  • 54
  • 46
  • 37
  • 35
  • 16
  • 9
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1270
  • 321
  • 173
  • 134
  • 126
  • 112
  • 107
  • 104
  • 91
  • 85
  • 73
  • 70
  • 70
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Observational signatures of massive star formation : an investigation of the environments in which they form, and the applicability of the paradigm of low-mass star formation

Johnston, Katharine G. January 2011 (has links)
This thesis presents both a study of the cluster-scale environments in which massive stars form, investigating in particular how the ionized gas in these regions relates to the molecular star-forming material, as well as detailed studies of two luminous forming stars, AFGL 2591 and IRAS 20126+4104, to determine whether they are forming similarly to their low-mass counterparts. The results of this work include the identification of 35 HII regions (20 newly discovered) via a radio continuum survey of ionized gas towards 31 molecular cluster-forming clumps. The observed ionized gas was found to be preferentially associated with the clumps, which were shown to have a range of evolutionary stages. The massive star formation efficiency was determined for the clumps with associated ionized gas, and a relationship was found between the mass of the clumps and the mass of their embedded massive stars. By modelling the SEDs and images of AFGL 2591 and IRAS 20126+4104, it was found that the geometry of their circumstellar material was generally consistent with an envelope plus disk, similar to that expected for low-mass protostars. However, within the central ~1800 AU, the mid-IR images of IRAS 20126+4104 were better described by only a flattened envelope, suggesting that the radiation from IRAS 20126+4104 may be affecting the regions closest to the star. Observations of the ionized and molecular gas towards AFGL 2591 were carried out, and a photoionization code was developed to interpret these observations. The results showed that the observed 3.6 cm emission is likely to be produced by both a shock-ionized jet and a hypercompact HII region that does not appear to have disrupted the jet or the large-scale circumstellar environment. In addition, the C¹⁸O(1-0) emission observed towards AFGL2591 traces the densest parts of the outflow, with the blue-shifted emission exhibiting many of the properties of the outflows from low-mass protostars.
432

The earliest fragmentation in molecular clouds : and its connection to star formation

Smith, Rowan Johnston January 2010 (has links)
Stars are born from dense cores of gas within molecular clouds. The exact nature of the connection between these gas cores and the stars they form is an important issue in the field of star formation. In this thesis I use numerical simulations of molecular clouds to trace the evolution of cores into stars. The CLUMPFIND method, commonly used to identify gas structures is tested. I find that the core boundaries it yields are unreliable, but in spite of this, the same profile is universally found for the mass function. To facilitate a more robust definition of a core, a modified clumpfind algorithm which uses gravitational potential instead of density is introduced. This allows the earliest fragmentation in a simulated molecular cloud to be identified. The first bound cores have a mass function that closely resembles the stellar IMF, but there is a poor correspondence between individual core masses and the stellar masses formed from them. From this, it is postulated that environmental factors play a significant part in a core’s evolution. This is particularly true for massive stars, as massive cores are prone to further fragmentation. In these simulations, massive stars are formed simultaneously with stellar clusters, and thus the evolution of one can affect the other. In particular, the global collapse of the forming cluster aids accretion by the precursors of the massive stars. By tracing the evolution of the massive stars, I find that most of the material accreted by them comes from diffuse gas, rather than from a well-defined stellar core.
433

Mass accretion in the embedded phase of low-mass star formation

Dunham, Michael Mark 02 November 2010 (has links)
A long-standing problem in low-mass star formation is the "luminosity problem," whereby protostars are underluminous compared to the accretion luminosity expected both from theoretical collapse calculations and arguments based on the minimum accretion rate necessary to form a star within the embedded phase duration. In this dissertation, I present new research on protostars and the protostellar accretion process that addresses the luminosity problem in the following ways: I report new infrared detections of a very low luminosity protostar in Taurus and use all existing data ranging from the infrared through millimeter wavelengths to constrain radiative transfer models and determine physical properties of the source. I argue that the derived source luminosity is lower than that expected based on the properties of a previously detected molecular outflow driven by this source and suggest that this discrepancy can be resolved by variable rather than constant mass accretion. I report the discovery of a new protostar that is also driving a molecular outflow. Following a similar modeling procedure as above, I show that this source has an even lower luminosity that is once again inconsistent with that expected based on the properties of its outflow, again suggesting variable mass accretion. I present the results of a complete search for all protostars with luminosities less than or equal to that of our Sun in a new infrared survey of nearby star-forming regions. I identify 50 protostars with such luminosities. Only a small fraction (15-25%) of dense cores thought to be starless (not yet collapsing to form stars) in fact harbor low luminosity protostars. The distribution of luminosities of these 50 protostars is inconsistent with a constant protostellar mass accretion rate. I present a set of evolutionary models that start with existing models following the inside-out collapse of singular isothermal spheres and add isotropic scattering off dust grains, a circumstellar disk, two-dimensional envelope structure, mass-loss and the opening of outflow cavities, and a simple treatment of episodic mass accretion. I conclude that episodic mass accretion is both necessary and sufficient to resolve the luminosity problem. / text
434

Chemical evolution in low-mass star forming cores

Chen, Jo-Hsin 02 November 2010 (has links)
In this thesis, I focus on the physical and chemical evolution at the earliest stages of low-mass star formation. I report results from the Spitzer Space Telescope and molecular line observations of 9 species toward the dark cloud L43, a survey of 10 Class 0 and 6 Class I protostars with 8 molecular lines, and a survey of 9 Very Low Luminosity Objects (VeLLOs) with 11 molecular lines. From the observational results, CO depletion is extensively observed with C¹⁸O(2-1) maps. A general evolutionary trend is also seen toward the Class 0 and I samples: higher deuterium fractionation at higher CO depletion. For the VeLLO candidates and starless cores with N₂D⁺(3-2) detection, we found the deuterium ratio of N₂D⁺/N₂H⁺ is higher comparing with the Class 0 and I samples. We use DCO⁺(3-2) maps to trace the velocity structures. Also, HCO⁺(3-2) blue profiles are seen toward the VeLLO candidate L328, indicating possible infall. To test theoretical models and to interpret the observations, we adopt a modeling sequence with self-consistent calculations of dust radiative transfer, gas energetics, chemistry, and line radiative transfer. In the L43 region described in Chapter 2, a starless core and a Class I protostar are evolving in the same environment. We modeled both sources with the same initial conditions to test the chemical characteristics with and without protostellar heating. The physical model consists of a series of Bonner-Ebert spheres describing the pre-protostellar (PPC) stages following by standard inside-out collapse (Shu 1977). The model best matches the observed lines suggests a longer total timescale at the PPC stage, with faster evolution at the later steps with higher densities. In Chapter 3, we modeled the entire group of Class 0 and I protostars. The trend of decreasing deuterium ratio can be seen after the temperature is high enough for CO to evaporate. After the evaporation, the history of heavy depletion (e.g, from longer PPC timescales or different grain surface properties) no longer affects the line intensities of gas-phase CO. The HCO⁺ blue profiles, which are used as infall indicators, are predicted to be observed when infall is beyond the CO evaporation front. The low luminosity of VeLLOs cannot be explained by standard models with steady accretion, and we tested an evolutionary model incorporating episodic accretion to investigate the thermal history and chemical behaviors. We tested a few chemical parameters to compare with the observations and the results from Chapter 2 and 3. The modeling results from episodic accretion models show that CO and N₂ evaporate from grain mantle surfaces at the accretion bursts and can freeze back onto grain surfaces during the long periods of quiescent phases. Deuterated species, such as N₂D⁺ and H₂D⁺, are most sensitive to the temperature. Possible good tracers for the thermal history include the line intensities of gas-phase N₂H+ relative to CO, as well as CO₂ and CO ice features. / text
435

Molecular gas in the galaxy M83 : Its distribution, kinematics, and relation to star formation

Andersson Lundgren, Andreas January 2004 (has links)
<p>The barred spiral galaxy M83 (NGC5236) has been observed in the <sup>12</sup>CO <i>J</i>=1–0 and <i>J</i>=2–1 millimetre lines with the Swedish-ESO Submillimetre Telescope (SEST). The sizes of the CO maps are 100×100, and they cover the entire optical disk. The CO emission is strongly peaked toward the nucleus. The molecular spiral arms are clearly resolved and can be traced for about 360º. The total molecular gas mass is comparable to the total Hi mass, but H<sub>2 </sub>dominates in the optical disk.</p><p>Iso-velocity maps show the signature of an inclined, rotating disk, but also the effects of streaming motions along the spiral arms. The dynamical mass is determined and compared to the gas mass. The pattern speed is determined from the residual velocity pattern, and the locations of various resonances are discussed. The molecular gas velocity dispersion is determined, and a trend of decreasing dispersion with increasing galactocentric radius is found.</p><p>A total gas (H<sub>2</sub>+Hi+He) mass surface density map is presented, and compared to the critical density for star formation of an isothermal gaseous disk. The star formation rate (SFR) in the disk is estimated using data from various star formation tracers. The different SFR estimates agree well when corrections for extinctions, based on the total gas mass map, are made. The radial SFR distribution shows features that can be associated with kinematic resonances. We also find an increased star formation efficiency in the spiral arms. Different Schmidt laws are fitted to the data. The star formation properties of the nuclear region, based on high angular resolution HST data, are also discussed.</p>
436

Free-Choice Family Learning Experiences at Informal Astronomy Observing Events

Wenger, Matthew C. January 2011 (has links)
This qualitative study is an exploratory look at family experiences at night time telescope observing events, often called star parties. Four families participated in this study which looked at their expectations, experiences and agendas as well as the roles that identity and family culture played in the negotiation of meaning. Two families who had prior experience with attending star parties were recruited ahead of time and two other families who were first time visitors were recruited on-site at the observing event. Data were collected at two star parties. At each event, one experienced family was paired with an on-site family for the purposes of facilitating conversations about expectations and prior experiences.The results of this study showed that learning is constantly occurring among families, and that star parties and family culture were mediational means for making meaning. Expectations and agendas were found to affect the families' star party experiences and differences were observed between the expectations and experiences of families based on their prior experiences with star parties. These data also showed that family members are actively negotiating their individual and family identities. These families use their cultural history together to make sense of their star party experiences; however, the meaning that families were negotiating was often focused more on developing family and individual identity rather than science content. The families in this study used the star party context as a way to connect with each other, to make sense of their prior experiences, and as raw material for making sense of future experiences.
437

Interstellar Gas Clouds and Gen. Ed. Astronomy Students: Who Are They? How Do They Behave?

Schlingman, Wayne M. January 2012 (has links)
The first chapter begins with the observations of 1,882 sources from the Bolocam Galactic Plane Survey (BGPS) at 1.1 mm in HCO⁺ J = 3 − 2 and N₂H⁺ J = 3 − 2. We determine kinematic distances for 529 sources and derive the size, mass, and average density for this subset of clumps. The median size of BGPS clumps is 0.75 pc with a median mass of 330 M⊙ (assuming T(Dust) = 20 K). The median HCO⁺ linewidth is 2.9 km s⁻¹ indicating the clumps are not thermally supported and provide no evidence for a size-linewidth relationship. This collection of objects is a less-biased sample of star-forming regions in the Milky Way that likely span a wide range of evolutionary states. We study in detail the G111 Infrared Dark Cloud northwest of NGC 7538 with the K-band Focal Plane Array. We map NH₃ (1,1) and (2,2), H₂O maser, and CCS emission simultaneously with the GBT. We find the NH₃ gas traces the 1.1 mm BGPS structure very well with gas kinetic temperatures consistently close to 15 K. Typical column densities are 2.5 × 10¹⁴ cm⁻² with a median abundance of NH₃ to H₂ of 5.94 × 10⁻⁸. The median linewidth of the NH₃ emission is 0.64 km s⁻¹ indicating the filament is not thermally supported. The NH₃ is subthermally populated along the entire filament. Individual NH3 peaks have a median size of 0.61 pc, mass of 188M⊙, and density of 3.4×10³ cm⁻³. An activity analysis shows the most active star forming regions are found at the junctions of the subfilaments that make up the larger G111 IRDC. The last chapter describes our systematic examination of individual student responses to the Light and Spectroscopy Concept Inventory national dataset. We use classical test theory to form a framework of results that is used to evaluate item difficulties, item discriminations, and the overall reliability of the LSCI. We perform an analysis of individual student’s normalized gains, providing further insight into the prior results from this data set. This investigation allows us to better understand the efficacy of using the LSCI to measure student achievement.
438

Star Formation and Galaxy Evolution in Different Environments, from the Field to Massive Clusters

Tyler, Krystal D. January 2012 (has links)
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass--SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray under luminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
439

Kemattacken i Damaskus 2013 : en jämförande studie om nyhetsrapporteringen i The New York Times, The Moscow Times och The Daily Star Lebanon.

Kvist, Jonatan, Persson, Annelie January 2013 (has links)
Denna uppsats redovisar en kvalitativ textanalys av nyhetsrapporteringen om kemattacken utanför Syriens huvudstad Damaskus i tre engelskspråkiga tidningar i USA, Ryssland och Libanon. Studien jämför nyhetsrapportering i The New York Times (USA), The Moscow Times (Ryssland) och The Daily Star Lebanon (Libanon). Underlaget för studien är material publicerat under tre perioder och består sammantaget av 35 artiklar.. Den första perioden utspelar sig de första två dagarna efter kemattacken i Damaskus förorter. Andra perioden utspelar sig dagen före och efter att Syriens regim pekas ut som ansvarig av USA:s utrikesminister. Den tredje perioden utspelar sig dagen före och efter att Syriens regim får en diplomatisk möjlighet att förhindra ett amerikanskt anfall genom att överlämna alla sina kemvapen. Uppsatsens teoretiska ramverk bygger på tidigare forskning om journalistisk narrativitet, krigs- och fredsjournalistik och hur källor hanteras i krigsrapportering. Genom att svara på åtta delfrågor besvaras studiens fråga om hur kemattacken i Damaskus förorter rapporterades i de tre tidningarna. Källor och citat i artiklarna är avgörande för helheten. Övergripande har New York Times fokus på president Obama, hans administration, dess uttalanden och relationer. När president Obama under sista perioden vänder sig till amerikanska kongressen och ber om stöd för ingripa i Syrien flyttas fokus i rapporteringen till ett än mer nationellt perspektiv. Daily Star har ett växlande perspektiv. Artiklarna följer internationell politik och hur den mobiliseras. Tidningen speglar också lidandet i Syrien samt konsekvenserna i det egna landet. Moscow Times håller sig till ett ryskt politiskt perspektiv i samtliga artiklar. Det är främst det egna landets toppolitiker som kommer till tals.
440

The Journey to Manhood: George Lucas' Saga of Sacrifice and Salvation

Wong, Fran 12 1900 (has links)
Permission from the author to digitize this work is pending. Please contact the ICS library if you would like to view this work.

Page generated in 0.0269 seconds