1 |
On grouping theory in dot patterns, with applications to perception theory and 3D inverse geometry / Sur la théorie du regroupement de points en 2D avec applications à la théorie de la perception et à la géométrie 3D inverseLezama, José 06 March 2015 (has links)
Cette thèse porte sur l'étude de deux modèles mathématiques pour une tâchevisuelle élémentaire: le regroupement perceptuel de points 2D. Le premier modèletraite la détection d'alignements de point perceptuellement relevant. Ledeuxième modèle étend ce cadre au cas plus général de la bonne continuation depoints. Dans les deux cas, les modèles proposés sont invariants au changementd'échelle, et non supervisés. Ils sont conçus pour être robustes au bruit,jusqu'au point où les structures à détecter deviennent mathématiquementimpossibles de distinguer du bruit. Les expériences presentées montrent unecohérence entre notre théorie de détéction et les processus de démasquage ayantlieu dans la perception humaine.Les modèles proposés sont basés dans la méthodologie a contrario, uneformalisation du principe de non accidentalité dans la théorie de laperception. Cette thèse fait deux contributions au méthodes a contrario. Une estl'introduction de seuils de détection adaptatifs qui sont conditionnels auxenvirons des structures évaluées. La deuxième contribution est une nouvellestratégie raffinée pour résoudre la redondance de plusieurs détectionssignificatives.Finalement, l'utilité du détecteur d'alignements de points comme outil générald'analyse de données est démontrée avec son application a une problème classiqueen vision par ordinateur: la détection de points de fuite. Le détecteurd'alignements de points proposé, utilisé avec des outils standards, produit desrésultats améliorant l'état de l'art.Visant à la recherche reproductible, toutes les méthodes sont soumis au journalIPOL, en incluant descriptions détaillées des algorithmes, du code sourcecommenté et démonstrations en ligne pour chaque méthode. / This thesis studies two mathematical models for an elementary visual task: theperceptual grouping of dot patterns. The first model handles the detection ofperceptually relevant arrangements of collinear dots. The second model extendsthis framework to the more general case of good continuation of dots. In bothcases, the proposed models are scale invariant and unsupervised. They aredesigned to be robust to noise, up to the point where the structures to detectbecome mathematically indistinguishable from noise. The experiments presentedshow a good match of our detection theory with the unmasking processes takingplace in human perception, supporting their perceptual plausibility.The proposed models are based on the a contrario framework, a formalization ofthe non-accidentalness principle in perception theory. This thesis makes twocontributions to the a contrario methodology. One is the introduction ofadaptive detection thresholds that are conditional to the structure's localsurroundings. The second is a new refined strategy for resolving the redundancyof multiple meaningful detections. Finally, the usefulness of the collinear point detector as a general patternanalysis tool is demonstrated by its application to a classic problem incomputer vision: the detection of vanishing points. The proposed dot alignmentdetector, used in conjunction with standard tools, produces improved resultsover the state-of-the-art methods in the literature.Aiming at reproducible research, all methods are submitted to the IPOL journal,including detailed descriptions of the algorithms, commented reference sourcecodes, and online demonstrations for each one.
|
2 |
Fiabilité et précision en stéréoscopie : application à l'imagerie aérienne et satellitaire à haute résolutionSabater, Neus 07 December 2009 (has links) (PDF)
Cette thèse se situe dans le cadre du projet MISS (Mathématiques de l'Imagerie Stéréoscopique Spatiale) monté par le CNES en collaboration avec plusieurs laboratoires universitaires en 2007. Ce projet se donne l'objectif ambitieux de modéliser un satellite stéréoscopique, prenant deux vues non simultanées mais très rapprochées de la Terre en milieu urbain. Son but principal est d'obtenir une chaîne automatique de reconstruction urbaine à haute résolution à partir de ces deux vues. Ce projet se heurte toutefois à des problèmes de fond que la présente thèse s'attache à résoudre. Le premier problème est le rejet des matches qui pourraient se produire par hasard, notamment dans les zones d'ombres ou d'occlusion, et le rejet également des mouvements au sol (véhicules, piétons, etc.). La thèse propose une méthode de rejet de faux matches basée sur la méthodologie dite a contrario. On montre la consistance mathématique de cette méthode de rejet, et elle est validée sur des paires simulées exactes, sur des vérités terrain fournies par le CNES, et sur des paires classiques de benchmark (Middlebury). Les matches fiables restants représentent entre 40% et 90% des pixels selon les paires testées. Le second problème de fond abordé est la précision. En effet le type de stéréoscopie envisagé exige un très faible angle entre les deux vues, qui sont visuellement presque identiques. Pour obtenir un relief correct, il faut effectuer un recalage extrêmement précis, et calibrer le niveau de bruit qui permet un tel recalage. La thèse met en place une méthode de recalage subpixélien, qui sera démontrée être optimale par des arguments mathématiques et expérimentaux. Ces résultats étendent et améliorent les résultats obtenus au CNES par la méthode MARC. En particulier, il sera montré sur les images de benchmark Middlebury que la précision théorique permise par le bruit correspond bien à celle obtenue sur les matches fiables. Bien que ces résultats soient obtenus dans le cadre d'un dispositif d'acquisition précis (stéréoscopie aérienne ou satellitaire à faible angle), tous les résultats sont utilisables en stéréoscopie quelconque, comme montré dans beaucoup d'expériences.
|
3 |
Estimation du contexte par vision embarquée et schémas de commande pour l’automobile / Context estimation using embedded vision and schemes control for automobileAmmar, Moez 21 December 2012 (has links)
Les systèmes dotés d’autonomie doivent continument évaluer leur environnement, via des capteurs embarqués, afin de prendre des décisions pertinentes au regard de leur mission, mais aussi de l’endosystème et de l’exosystème. Dans le cas de véhicules dits ‘intelligents’, l’attention quant au contexte environnant se porte principalement d’une part sur des objets parfaitement normalisés, comme la signalisation routière verticale ou horizontale, et d’autre part sur des objets difficilement modélisables de par leur nombre et leur variété (piétons, cyclistes, autres véhicules, animaux, ballons, obstacles quelconques sur la chaussée, etc…). La décision a contrario offre un cadre formel, adapté à ce problème de détection d’objets variables, car modélisant le bruit plutôt qu’énumérant les objets à détecter. La contribution principale de cette thèse est d’adapter des mesures probabilistes de type NFA (Nombre de Fausses Alarmes) au problème de la détection d’objets soit ayant un mouvement propre, soit saillants par rapport au plan de la route. Un point fort des algorithmes développés est qu’ils s’affranchissent de tout seuil de détection. Une première mesure NFA permet d’identifier le sous-domaine de l'image (pixels non nécessairement connexes) dont les valeurs de niveau de gris sont les plus étonnantes, sous hypothèse de bruit gaussien (modèle naïf). Une seconde mesure NFA permet ensuite d’identifier le sous-ensemble des fenêtres de significativité maximale, sous hypothèse de loi binômiale (modèle naïf). Nous montrons que ces mesures NFA peuvent également servir de critères d’optimisation de paramètres, qu’il s’agisse du mouvement 6D de la caméra embarquée, ou d’un seuil de binarisation sur les niveaux de gris. Enfin, nous montrons que les algorithmes proposés sont génériques au sens où ils s’appliquent à différents types d’images en entrée, radiométriques ou de disparité.A l’opposé de l’approche a contrario, les modèles markoviens permettent d’injecter des connaissances a priori sur les objets recherchés. Nous les exploitons dans le cas de la classification de marquages routiers.A partir de l’estimation du contexte (signalisation, détection d’objets ‘inconnus’), la partie commande comporte premièrement une spécification des trajectoires possibles et deuxièmement des lois en boucle fermée assurant le suivi de la trajectoire sélectionnée. Les diverses trajectoires possibles sont regroupées en un faisceau, soit un ensemble de fonctions du temps où divers paramètres permettent de régler les invariants géométriques locaux (pente, courbure). Ces paramètres seront globalement fonction du contexte extérieur au véhicule (présence de vulnérables, d'obstacles fixes, de limitations de vitesse, etc.) et permettent de déterminer l'élément du faisceau choisi. Le suivi de la trajectoire choisie s'effectue alors en utilisant des techniques de type platitude différentielle, qui s'avèrent particulièrement bien adaptées aux problèmes de suivi de trajectoire. Un système différentiellement plat est en effet entièrement paramétré par ses sorties plates et leurs dérivées. Une autre propriété caractéristique de ce type de systèmes est d'être linéarisable de manière exacte (et donc globale) par bouclage dynamique endogène et transformation de coordonnées. Le suivi stabilisant est alors trivialement obtenu sur le système linéarisé. / To take relevant decisions, autonomous systems have to continuously estimate their environment via embedded sensors. In the case of 'intelligent' vehicles, the estimation of the context focuses both on objects perfectly known such as road signs (vertical or horizontal), and on objects unknown or difficult to describe due to their number and variety (pedestrians, cyclists, other vehicles, animals, any obstacles on the road, etc.). Now, the a contrario modelling provides a formal framework adapted to the problem of detection of variable objects, by modeling the noise rather than the objects to detect. Our main contribution in this PhD work was to adapt the probabilistic NFA (Number of False Alarms) measurements to the problem of detection of objects simply defined either as having an own motion, or salient to the road plane. A highlight of the proposed algorithms is that they are free from any detection parameter, in particular threshold. A first NFA criterion allows the identification of the sub-domain of the image (not necessarily connected pixels) whose gray level values are the most amazing under Gaussian noise assumption (naive model). A second NFA criterion allows then identifying the subset of maximum significant windows under binomial hypothesis (naive model). We prove that these measurements (NFA) can also be used for the estimation of intrinsec parameters, for instance either the 6D movement of the onboard camera, or a binarisation threshold. Finally, we prove that the proposed algorithms are generic and can be applied to different kinds of input images, for instance either radiometric images or disparity maps. Conversely to the a contrario approach, the Markov models allow to inject a priori knowledge about the objects sought. We use it in the case of the road marking classification. From the context estimation (road signs, detected objects), the control part includes firstly a specification of the possible trajectories and secondly the laws to achieve the selected path. The possible trajectories are grouped into a bundle, and various parameters are used to set the local geometric invariants (slope, curvature). These parameters depend on the vehicle context (presence of vulnerables, fixed obstacles, speed limits, etc ... ), and allows determining the selected the trajectory from the bundle. Differentially flat system is indeed fully parameterized by its flat outputs and their derivatives. Another feature of this kind of systems is to be accurately linearized by endogenous dynamics feed-back and coordinate transformation. Tracking stabilizer is then trivially obtained from the linearized system.
|
4 |
Convergences de structures linéaires dans les images : modélisation stochastique et applications en imagerie médicale / Convergent linear structures in images : stochastic modelisation and application in medical imagingDoré, Fanny 08 July 2014 (has links)
Cette thèse traite de la détection de zones de convergence dans une image, dans un cadre a contrario. C'est un travail théorique préliminaire qui explore différentes altérations du cadre a contrario. Elle a pour application dans le domaine médical la détection des lésions stellaires dans les mammographies, responsables de nombreux cancers du sein et qui se matérialisent par un centre intense vers lequel convergent les spicules, structures linéaires normalement présents dans le sein. Les lésions stellaires et distorsions architecturales ont suscité de nombreux travaux. La plupart des méthodes de détection sont basées sur l'extraction de caractéristiques locales de l'image (orientation du gradient, orientation des pixels, variance de l'histogramme de l'orientation...) puis utilisent une méthode de classification pour attribuer à chaque pixel une probabilité d'appartenir à une lésion stellaire. Ces méthodes nécessitent souvent l'utilisation de filtres en pré-traitement et en post-traitement afin de réduire le bruit, ou de seuiller les résultats finaux. La méthodologie a contrario offre un nouveau cadre pour la détection de structures dans les images. Elle s'appuie sur la définition d'un modèle de bruit, et sur une mesure de l'écart des observations à ce modèle. Le modèle porte sur des structures élémentaires et est souvent choisi "uniforme" : c'est-à-dire que les structures sont supposées suivre la loi uniforme et indépendantes. Or dans les mammographies on observe que les spicules ont une orientation privilégiée, et ne sont pas uniformément distribuées. Nous proposons l'utilisation de la méthode a contrario dans un cadre anisotrope pour mieux tenir compte de la distribution normale des spicules dans une mammographie. Les modèles anisotropes proposés modélisent le fait qu'une partie des structures linéaires est normalement convergentes vers un point commun. Ils portent soit sur les droites de l'image quand il s'agit de détecter les convergences globales, soit sur les segments quand on chercher les convergences locales dans une image. Concernant la détection des convergences locales, le cadre a contrario offre de nombreuses possibilités : sur le choix du nombre de fausses alarmes ou sur le choix du modèle de bruit. Ces choix sont détaillés sur des exemples synthétiques, sur des mammographies et sur des images naturelles. Les modèles a contrario que l'on étudie sont donnés sous la forme de mélanges paramétriques de deux termes : un terme uniforme et un terme "gaussien", modélisant le fait qu'une partie des structures est naturellement convergente. Pour ces différents types de modèles nous proposons d'estimer leurs paramètres. Le point de convergence globale est estimé par minimisation du nombre de fausses alarmes, et l'estimation des autres paramètres est faite par maximisation de la log-vraisemblance. Les modèles estimés sont ensuite testés en tant que modèles a contrario pour la détection des convergences et les résultats sont comparés à ceux que donnait le modèle uniforme. / This thesis deals with the detection of points of convergences in images, in an a contrario framework. This is a preliminar work which studies various alterations of the a contrario framework such as the naive model. An application in the medical field is the detection of stellate lesions in mammograms, which are highly suspicious signs of breast cancer and are characterized by a radiating pattern of spicules with a bright center. There are plenty of work regarding stellate lesions and architectural distortions. Most of them are based on the extraction of local features such as the gradient orientation, or the pixel orientation and more generally statistics of the orientation histogram. These features are then used in a classifier to assign to each pixel its probability of malignancy. The a contrario methods sets a different framework for the detection of geometric structures in images. A naïve model on line structures is defined and is often chosen as the uniform model, which is not well suited for mammograms where there is a privileged orientation of spicules. We propose in this thesis an anisotropic a contrario framework for a better description of the normal distribution of spicules in a mammogram. The designed models describe the convergence of some of the line structures to a single point. They either concern the lines or the line segments of an image wether we detect global or local convergences. In the last case we explore several definitions of the number of false alarms and several a contrario models on synthetic, natural images and mammograms. We give the a contrario models as two terms mixtures, one uniform and the other of Gaussian type. These are parametric models and we propose an algorithm to estimate their parameters (the point of convergence is estimated with an a contrario method and the other parameters are approached by maximization of the likelihood). The resulting models are used as a contrario models and the results are compared with those against the uniform model.
|
5 |
Detection and identification of elliptical structure arrangements in images : theory and algorithms / Détection et identification de structures elliptiques en images : Paradigme et algorithmesPatraucean, Viorica 19 January 2012 (has links)
Cette thèse porte sur différentes problématiques liées à la détection, l'ajustement et l'identification de structures elliptiques en images. Nous plaçons la détection de primitives géométriques dans le cadre statistique des méthodes a contrario afin d'obtenir un détecteur de segments de droites et d'arcs circulaires/elliptiques sans paramètres et capable de contrôler le nombre de fausses détections. Pour améliorer la précision des primitives détectées, une technique analytique simple d'ajustement de coniques est proposée ; elle combine la distance algébrique et l'orientation du gradient. L'identification d'une configuration de cercles coplanaires en images par une signature discriminante demande normalement la rectification Euclidienne du plan contenant les cercles. Nous proposons une technique efficace de calcul de la signature qui s'affranchit de l'étape de rectification ; elle est fondée exclusivement sur des propriétés invariantes du plan projectif, devenant elle même projectivement invariante / This thesis deals with different aspects concerning the detection, fitting, and identification of elliptical features in digital images. We put the geometric feature detection in the a contrario statistical framework in order to obtain a combined parameter-free line segment, circular/elliptical arc detector, which controls the number of false detections. To improve the accuracy of the detected features, especially in cases of occluded circles/ellipses, a simple closed-form technique for conic fitting is introduced, which merges efficiently the algebraic distance with the gradient orientation. Identifying a configuration of coplanar circles in images through a discriminant signature usually requires the Euclidean reconstruction of the plane containing the circles. We propose an efficient signature computation method that bypasses the Euclidean reconstruction; it relies exclusively on invariant properties of the projective plane, being thus itself invariant under perspective
|
6 |
Évaluation d’algorithmes stéréoscopiques de haute précision en faible B/H / Evaluation of high precision low baseline stereo vision algorithmsDagobert, Tristan 04 December 2017 (has links)
Cette thèse étudie la précision en vision stéréo, les méthodes de détection dites a contrario et en présente une application à l'imagerie satellitaire. La première partie a été réalisée dans le cadre du projet DGA-ANR-ASTRID "STÉRÉO". Son but est de définir les limites effectives des méthodes de reconstruction stéréo quand on contrôle toute la chaîne d’acquisition à la précision maximale, que l’on acquiert des paires stéréo en rapport B/H très faible et sans bruit. Pour valider ce concept, nous créons des vérités terrains très précises en utilisant un rendeur. En gardant les rayons calculés durant le rendu, nous avons une information très dense sur la scène 3D. Ainsi nous créons des cartes d'occultations, de disparités dont l'erreur de précision est inférieure à 10e-6. Nous avons mis à la disposition de la communauté de recherche des images de synthèse avec un SNR supérieur à 500 : un ensemble de 66 paires stéréo dont le B/H varie de1/2500 à 1/50. Pour évaluer les méthodes de stéréo sur ce nouveau type de données, nous proposons des métriques calculant la qualité des cartes de disparités estimées, combinant la précision et la densité des points dont l'erreur relative est inférieure à un certain seuil. Nous évaluons plusieurs algorithmes représentatifs de l'état de l'art, sur les paires créées ainsi sur les paires de Middlebury, jusqu'à leurs limites de fonctionnement. Nous confirmons par ces analyses, que les hypothèses théoriques sur le bien-fondé du faible B/H en fort SNR sont valides, jusqu'à une certaine limite que nous caractérisons. Nous découvrons ainsi que de simples méthodes de flux optique pour l'appariement stéréo deviennent plus performantes que des méthodes variationnelles discrètes plus élaborées. Cette conclusion n'est toutefois valide que pour des forts rapports signal à bruit. L'exploitation des données denses nous permet de compléter les vérités terrain par une détection très précise des bords d'occultation. Nous proposons une méthode de calcul de contours vectoriels subpixéliens à partir d'un nuage de points très dense, basée sur des méthodes a contrario de classification de pixels. La seconde partie de la thèse est dédiée à une application du flot optique subpixélien et des méthodes a contrario pour détecter des nuages en imagerie satellitaire. Nous proposons une méthode qui n'exploite que l'information visible optique. Elle repose sur la redondance temporelle obtenue grâce au passage répété des satellites au-dessus des mêmes zones géographiques. Nous définissons quatre indices pour séparer les nuages du paysage : le mouvement apparent inter-canaux, la texture locale, l'émergence temporelle et la luminance. Ces indices sont modélisés dans le cadre statistique des méthodes a contrario qui produisent un NFA (nombre de fausses alarmes pour chacun). Nous proposons une méthode pour combiner ces indices et calculer un NFA beaucoup plus discriminant. Nous comparons les cartes de nuages estimées à des vérités terrain annotées et aux cartes nuageuses produites par les algorithmes liés aux satellites Landsat-8 etSentinel-2. Nous montrons que les scores de détection et de fausses alarmes sont supérieurs à ceux obtenus avec ces algorithmes, qui pourtant utilisent une dizaine de bandes multi-spectrales. / This thesis studies the accuracy in stereo vision, detection methods calleda contrario and presents an application to satellite imagery. The first part was carried out within the framework of the project DGA-ANR-ASTRID"STEREO". His The aim is to define the effective limits of stereo reconstruction when controlling the entire acquisition chain at the maximum precision, that one acquires stereo pairs in very low baseline and noise-free. To validate thisconcept, we create very precise ground truths using a renderer. By keeping the rays computed during rendering, we have very dense information on the 3Dscene. Thus we create occultation and disparity maps whose precision error is less than 10e-6. We have made synthetic images available to the research community with an SNR greater than 500: a set of 66 stereo pairs whoseB/H varies from 1/2500 to 1/50. To evaluate stereo methods onthis new type of data, we propose metrics computing the quality of the estimated disparity maps, combining the precision and the density of the points whose relative error is less than a certain threshold. We evaluate several algorithmsrepresentative of the state of the art, on the pairs thus created and on theMiddlebury pairs, up to their operating limits. We confirm by these analyzesthat the theoretical assumptions about the merit of the low B/H in highSNR are valid, up to a certain limit that we characterize. We thus discover that simple optical flow methods for stereo matching become more efficient than more sophisticated discrete variational methods. This conclusion, however, is only valid for high signal-to-noise ratios. The use of the dense data allows us to complete the ground truths a subpixel detection of the occlusion edges. We propose a method to compute subpixel vector contours from a very dense cloud ofpoints, based on pixel classification a contrario methods. The second part of the thesis is devoted to an application of the subpixelian optical flowand a contrario methods to detect clouds in satellite imagery. We propose a method that exploits only visible optical information. It is based onthe temporal redundancy obtained by the repeated passages of the satellites overthe same geographical zones. We define four clues to separate the clouds fromthe landscape: the apparent inter-channel movement, Local texture, temporal emergence and luminance. These indices are modeled in the statistical framework of a contrario methods which produce an NFA (number of false alarms for each). We propose a method for combining these indices and computing a much more discriminating NFA. We compare the estimated cloud maps to annotated ground truths and the cloud maps produced by the algorithms related to the Landsat-8and Sentinel-2 satellites. We show that the detection and false alarms scores are higher than those obtained with these algorithms, which however use a dozen multi-spectral bands.
|
7 |
Apprentissage a contrario et architecture efficace pour la détection d'évènements visuels significatifsBurrus, Nicolas 08 December 2008 (has links) (PDF)
Pour assurer la robustesse d'un algorithme de détection, il est nécessaire de maîtriser son point de fonctionnement, et en particulier son taux de fausses alarmes. Cette tâche est particulièrement difficile en vision artificielle à cause de la grande variabilité des images naturelles, qui amène généralement à introduire des paramètres choisis a priori qui limitent la portée et la validité des algorithmes. Récemment, l'approche statistique a contrario a montré sa capacité à détecter des structures visuelles sans autre paramètre libre que le nombre moyen de fausses alarmes tolérées, en recherchant des entités dont certaines propriétés sont statistiquement trop improbables pour être le fruit du hasard. Les applications existantes reposent toutefois sur un cadre purement analytique qui requiert un travail important de modélisation, rend difficile l'utilisation de caractéristiques multiples et limite l'utilisation d'heuristiques de recherche dirigées par les données. Nous proposons dans cette thèse d'assouplir ces restrictions en ayant recours à de l'apprentissage pour les quantités non calculables analytiquement. Nous illustrons l'intérêt de la démarche à travers trois applications : la détection de segments, la segmentation en régions homogènes et la détection d'objets à partir d'une base de photos. Pour les deux premières applications, nous montrons que des seuils de détection robustes peuvent être appris à partir d'images de bruit blanc. Pour la dernière, nous montrons que quelques exemples d'images naturelles ne contenant pas d'objets de la base suffisent pour obtenir un algorithme de détection fiable. Enfin, nous remarquons que la monotonicité du raisonnement a contrario permet d'intégrer incrémentalement des informations partielles. Cette propriété nous conduit à proposer une architecture "anytime" pour la détection d'objets, c'est-à-dire capable de fournir des détections progressivement au cours de son exécution, en commençant par les objets les plus saillants.
|
8 |
Mise en correspondance A contrario de points d'intérêt sous contraintes géométrique et photométrique / A Contrario matching of interest points through both geometric and photometric constraintsNoury, Nicolas 13 October 2011 (has links)
L'analyse de la structure et du mouvement permet d'estimer la forme d'objets 3D et la position de la caméra à partir de photos ou de vidéos. Le plus souvent, elle est réalisée au moyen des étapes suivantes : 1) L'extraction de points d'intérêt, 2) La mise en correspondance des points d'intérêt entre les images à l'aide de descripteurs photométriques des voisinages de point, 3) Le filtrage des appariements produits à l'étape précédente afin de ne conserver que ceux compatibles avec une contrainte géométrique fixée, dont on peut alors calculer les paramètres. Cependant, la ressemblance photométrique seule utilisée en deuxième étape ne suffit pas quand plusieurs points ont la même apparence. Ensuite, la dernière étape est effectuée par un algorithme de filtrage robuste, Ransac, qui nécessite de fixer des seuils, ce qui se révèle être une opération délicate. Le point de départ de ce travail est l'approche A Contrario Ransac de Moisan et Stival, qui permet de s'abstraire des seuils. Ensuite, notre première contribution a consisté en l'élaboration d'un modèle a contrario qui réalise la mise en correspondance à l'aide de critères photométrique et géométrique, ainsi que le filtrage robuste en une seule étape. Cette méthode permet de mettre en correspondance des scènes contenant des motifs répétés, ce qui n'est pas possible par l'approche habituelle. Notre seconde contribution étend ce résultat aux forts changements de point de vue, en améliorant la méthode ASift de Morel et Yu. Elle permet d'obtenir des correspondances plus nombreuses et plus densément réparties, dans des scènes difficiles contenant des motifs répétés observés sous des angles très différents / The analysis of structure from motion allows one to estimate the shape of 3D objects and the position of the camera from pictures or videos. It usually follows these three steps: 1) Extracting points of interest, 2) Matching points of interest using photometric descriptors computed on point neighborhoods, 3) Filtering previous matches so as to retain only those compatible with a geometric constraint, whose parameters can then be computed. However, for the second step, the photometric criterion is not enough on its own when several points are alike. As for the third step, it uses the Ransac robust filtering scheme, which requires setting thresholds, and that can be a difficult task. This work is based on Moisan and Stival's A Contrario Ransac approach, which allows one to set thresholds automatically. After assessing that method, the first contribution was the elaboration an a contrario model, which simultaneously achieves robust filtering and matching through both geometric and photometric criteria. That method allows one to match scenes with repeated patterns, which is impossible with the usual approach. The second contribution extended that result to strong viewpoint changes, improving the ASift method. The matches obtained are both more numerous and more densely distributed, in scenes containing many repeated patterns seen from very different angles.
|
9 |
Estimation du contexte par vision embarquée et schémas de commande pour l'automobileAmmar, Moez 21 December 2012 (has links) (PDF)
Les systèmes dotés d'autonomie doivent continument évaluer leur environnement, via des capteurs embarqués, afin de prendre des décisions pertinentes au regard de leur mission, mais aussi de l'endosystème et de l'exosystème. Dans le cas de véhicules dits 'intelligents', l'attention quant au contexte environnant se porte principalement d'une part sur des objets parfaitement normalisés, comme la signalisation routière verticale ou horizontale, et d'autre part sur des objets difficilement modélisables de par leur nombre et leur variété (piétons, cyclistes, autres véhicules, animaux, ballons, obstacles quelconques sur la chaussée, etc...). La décision a contrario offre un cadre formel, adapté à ce problème de détection d'objets variables, car modélisant le bruit plutôt qu'énumérant les objets à détecter. La contribution principale de cette thèse est d'adapter des mesures probabilistes de type NFA (Nombre de Fausses Alarmes) au problème de la détection d'objets soit ayant un mouvement propre, soit saillants par rapport au plan de la route. Un point fort des algorithmes développés est qu'ils s'affranchissent de tout seuil de détection. Une première mesure NFA permet d'identifier le sous-domaine de l'image (pixels non nécessairement connexes) dont les valeurs de niveau de gris sont les plus étonnantes, sous hypothèse de bruit gaussien (modèle naïf). Une seconde mesure NFA permet ensuite d'identifier le sous-ensemble des fenêtres de significativité maximale, sous hypothèse de loi binômiale (modèle naïf). Nous montrons que ces mesures NFA peuvent également servir de critères d'optimisation de paramètres, qu'il s'agisse du mouvement 6D de la caméra embarquée, ou d'un seuil de binarisation sur les niveaux de gris. Enfin, nous montrons que les algorithmes proposés sont génériques au sens où ils s'appliquent à différents types d'images en entrée, radiométriques ou de disparité.A l'opposé de l'approche a contrario, les modèles markoviens permettent d'injecter des connaissances a priori sur les objets recherchés. Nous les exploitons dans le cas de la classification de marquages routiers.A partir de l'estimation du contexte (signalisation, détection d'objets 'inconnus'), la partie commande comporte premièrement une spécification des trajectoires possibles et deuxièmement des lois en boucle fermée assurant le suivi de la trajectoire sélectionnée. Les diverses trajectoires possibles sont regroupées en un faisceau, soit un ensemble de fonctions du temps où divers paramètres permettent de régler les invariants géométriques locaux (pente, courbure). Ces paramètres seront globalement fonction du contexte extérieur au véhicule (présence de vulnérables, d'obstacles fixes, de limitations de vitesse, etc.) et permettent de déterminer l'élément du faisceau choisi. Le suivi de la trajectoire choisie s'effectue alors en utilisant des techniques de type platitude différentielle, qui s'avèrent particulièrement bien adaptées aux problèmes de suivi de trajectoire. Un système différentiellement plat est en effet entièrement paramétré par ses sorties plates et leurs dérivées. Une autre propriété caractéristique de ce type de systèmes est d'être linéarisable de manière exacte (et donc globale) par bouclage dynamique endogène et transformation de coordonnées. Le suivi stabilisant est alors trivialement obtenu sur le système linéarisé.
|
10 |
Convergences de structures linéaires dans les images : modélisation stochastique et applications en imagerie médicaleDoré, Fanny 08 July 2014 (has links) (PDF)
Cette thèse traite de la détection de zones de convergence dans une image, dans un cadre a contrario. C'est un travail théorique préliminaire qui explore différentes altérations du cadre a contrario. Elle a pour application dans le domaine médical la détection des lésions stellaires dans les mammographies, responsables de nombreux cancers du sein et qui se matérialisent par un centre intense vers lequel convergent les spicules, structures linéaires normalement présents dans le sein. Les lésions stellaires et distorsions architecturales ont suscité de nombreux travaux. La plupart des méthodes de détection sont basées sur l'extraction de caractéristiques locales de l'image (orientation du gradient, orientation des pixels, variance de l'histogramme de l'orientation...) puis utilisent une méthode de classification pour attribuer à chaque pixel une probabilité d'appartenir à une lésion stellaire. Ces méthodes nécessitent souvent l'utilisation de filtres en pré-traitement et en post-traitement afin de réduire le bruit, ou de seuiller les résultats finaux. La méthodologie a contrario offre un nouveau cadre pour la détection de structures dans les images. Elle s'appuie sur la définition d'un modèle de bruit, et sur une mesure de l'écart des observations à ce modèle. Le modèle porte sur des structures élémentaires et est souvent choisi "uniforme" : c'est-à-dire que les structures sont supposées suivre la loi uniforme et indépendantes. Or dans les mammographies on observe que les spicules ont une orientation privilégiée, et ne sont pas uniformément distribuées. Nous proposons l'utilisation de la méthode a contrario dans un cadre anisotrope pour mieux tenir compte de la distribution normale des spicules dans une mammographie. Les modèles anisotropes proposés modélisent le fait qu'une partie des structures linéaires est normalement convergentes vers un point commun. Ils portent soit sur les droites de l'image quand il s'agit de détecter les convergences globales, soit sur les segments quand on chercher les convergences locales dans une image. Concernant la détection des convergences locales, le cadre a contrario offre de nombreuses possibilités : sur le choix du nombre de fausses alarmes ou sur le choix du modèle de bruit. Ces choix sont détaillés sur des exemples synthétiques, sur des mammographies et sur des images naturelles. Les modèles a contrario que l'on étudie sont donnés sous la forme de mélanges paramétriques de deux termes : un terme uniforme et un terme "gaussien", modélisant le fait qu'une partie des structures est naturellement convergente. Pour ces différents types de modèles nous proposons d'estimer leurs paramètres. Le point de convergence globale est estimé par minimisation du nombre de fausses alarmes, et l'estimation des autres paramètres est faite par maximisation de la log-vraisemblance. Les modèles estimés sont ensuite testés en tant que modèles a contrario pour la détection des convergences et les résultats sont comparés à ceux que donnait le modèle uniforme.
|
Page generated in 0.0513 seconds