21 |
Algorithmes par decomposition de domaine et méthodes de discrétisation d'ordre elevé pour la résolution des systèmes d'équations aux dérivées partielles. Application aux problèmes issus de la mécanique des fluides et de l'électromagnétismeDolean, Victorita 07 July 2009 (has links) (PDF)
My main research topic is about developing new domain decomposition algorithms for the solution of systems of partial differential equations. This was mainly applied to fluid dynamics problems (as compressible Euler or Stokes equations) and electromagnetics (time-harmonic and time-domain first order system of Maxwell's equations). Since the solution of large linear systems is strongly related to the application of a discretization method, I was also interested in developing and analyzing the application of high order methods (such as Discontinuos Galerkin methods) to Maxwell's equations (sometimes in conjuction with time-discretization schemes in the case of time-domain problems). As an active member of NACHOS pro ject (besides my main afiliation as an assistant professor at University of Nice), I had the opportunity to develop certain directions in my research, by interacting with permanent et non-permanent members (Post-doctoral researchers) or participating to supervision of PhD Students. This is strongly refflected in a part of my scientific contributions so far. This memoir is composed of three parts: the first is about the application of Schwarz methods to fluid dynamics problems; the second about the high order methods for the Maxwell's equations and the last about the domain decomposition algorithms for wave propagation problems.
|
22 |
Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficientsSmears, Iain Robert Nicholas January 2015 (has links)
We propose a discontinuous Galerkin finite element method (DGFEM) for fully nonlinear elliptic Hamilton--Jacobi--Bellman (HJB) partial differential equations (PDE) of second order with Cordes coefficients. Our analysis shows that the method is both consistent and stable, with arbitrarily high-order convergence rates for sufficiently regular solutions. Error bounds for solutions with minimal regularity show that the method is generally convergent under suitable choices of meshes and polynomial degrees. The method allows for a broad range of hp-refinement strategies on unstructured meshes with varying element sizes and orders of approximation, thus permitting up to exponential convergence rates, even for nonsmooth solutions. Numerical experiments on problems with nonsmooth solutions and strongly anisotropic diffusion coefficients demonstrate the significant gains in accuracy and computational efficiency over existing methods. We then extend the DGFEM for elliptic HJB equations to a space-time DGFEM for parabolic HJB equations. The resulting method is consistent and unconditionally stable for varying time-steps, and we obtain error bounds for both rough and regular solutions, which show that the method is arbitrarily high-order with optimal convergence rates with respect to the mesh size, time-step size, and temporal polynomial degree, and possibly suboptimal by an order and a half in the spatial polynomial degree. Exponential convergence rates under combined hp- and τq-refinement are obtained in numerical experiments on problems with strongly anisotropic diffusion coefficients and early-time singularities. Finally, we show that the combination of a semismooth Newton method with nonoverlapping domain decomposition preconditioners leads to efficient solvers for the discrete nonlinear problems. The semismooth Newton method has a superlinear convergence rate, and performs very effectively in computations. We analyse the spectral bounds of nonoverlapping domain decomposition preconditioners for a model problem, where we establish sharp bounds that are explicit in both the mesh sizes and polynomial degrees. We then go beyond the model problem and show computationally that these algorithms lead to efficient and competitive solvers in practical applications to fully nonlinear HJB equations.
|
23 |
Metody vyššího řádu založené na rekonstrukci / Metody vyššího řádu založené na rekonstrukciDominik, Oldřich January 2014 (has links)
This work is concerned with the introduction of a new higher order numerical scheme based on the discontinuous Galerkin method (DGM). We follow the methodology of higher order finite volume (HOFV) and spectral volume (SV) schemes and introduce a reconstruction operator into the DGM. This operator constructs higher order piecewise polynomial reconstructions from the lower order DGM scheme. We present two variants: the generalization of standard HOFV schemes, already proposed by Dumbser et al. (2008) and the generalization of the SV method introduced by Wang (2002). Theoretical aspects are discussed and numerical experiments with the focus on a 2D advection problem are carried out. Powered by TCPDF (www.tcpdf.org)
|
24 |
Použití hp verze nespojité Galerkinovy metody pro simulaci stlačitelného proudění / Use of the hp discontinuous Galerkin method for a simulation of compressible flowsTarčák, Karol January 2012 (has links)
Title: Application of hp-adaptive discontinuous Galerkin method to com- pressible flow simulation Author: Karol Tarčák Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vít Dolejší, Ph.D., DSc. Abstract: In the present work we study an residuum estimate of disconti- nuous Galerkin method for the solution of Navier-Stokes equations. Firstly we summarize the construction of the viscous compressible flow model via Navier-Stokes partial differential equation and discontinuous Galerkin met- hod. Then we propose an extension of an already known residuum estimate for stationary problems to non-stationary problems. We observe the beha- vior of the proposed estimate and modify an existing hp-adaptive algorithm to use our estimate. Finally we apply the modified algorithm on test cases and present adapted meshes from the numerical experiments. Keywords: discontinuous Galerkin method, adaptivity, error estimate 4
|
25 |
Evaluation de l'efficacité de blindage de structures avec plaques minces : modélisation par une méthode de Galerkin discontinue / Evaluating shielding effectiveness of structures with thin sheets : modeling with discontinuous galerkin methodBoubekeur, Mohamed 10 December 2014 (has links)
Cette thèse se situe dans le domaine de l'électromagnétisme et plus particulièrement, celui de la compatibilité électromagnétique. L'objectif de cette thèse est de proposer une condition d'interface qui évite de mailler les plaques minces conductrices lors d’une modélisation tridimensionnelle. Cette condition permet de prendre en compte de manière précise la réflexion d'une onde ou sa transmission par une plaque conductrice. Elle permet aussi de tenir compte de l'effet de peau de l'effet de peau à l'intérieur de la plaque. Cette condition d'interface est intégrée dans une méthode Galerkin discontinue. La présence des termes de flux dans cette méthode rend facile l'implémentation de cette condition d'interface. Afin de montrer l'intérêt de cette condition dans le cadre de la compatibilité électromagnétique, des configurations d'interaction ondes-Structures sont traitées. Elles ont pour but d'étudier l'efficacité de blindage de diverses cavités bidimensionnelles et tridimensionnelles. / This thesis concerns electromagnetic fields and more particularly electromagnetic compatibility. The aim of this thesis is the modeling an interface condition to avoid the mesh of thin conductive sheets in 3D numerical methods. This interface condition allows to take in account the reflection or the transmission of an incident wave on a conductive sheet. It also takes into account the skin effect in this sheet. This interface condition is integrated in discontinuous Galerkin method. The presence of flux terms is this method makes easy to implement this interface condition. To demonstrate the advantage of this interface condition in electromagnetic compatibility problems, many configurations of interaction wave-Structure are treated. They aim to study the shielding effectiveness of different cavities in two and three dimensions.
|
26 |
Desenvolvimento de ferramenta computacional de alta ordem para a solução de problemas de propagação acústica. / Development of a high-order computational tool for solving acoustic propagation problemsMaciel, Saulo Ferreira 29 April 2013 (has links)
O desenvolvimento de uma ferramenta de Dinâmica de Fluidos Computacional que utiliza Método de Elementos Finitos baseada na discretização de Galerkin descontínuo é apresentado neste trabalho com objetivo de resolver a equação de Euler linearizada para escoamento compressível em duas dimensões usando malhas estruturadas e não estruturadas. Procuramos utilizar esta ferramenta como um propagador de ondas sonoras para estudar fenômenos aeroacústicos. O problema de Riemann presente no fluxo convectivo da equação de Euler é tratado com um método upwind HLL e para o avanço da solução no tempo é usado o método de Runge-Kutta explícito de 4 estágios com segunda ordem de precisão. A eficiência computacional, a convergência do método e a precisão são testadas através de simulações de escoamentos já apresentadas na literatura. A taxa de convergência para altas ordens de aproximação é assintótica que é um resultado compatível com a formulação Galerkin descontínuo. / The development of a Computation Fluid Dynamic Tool based on the Finite Element Method with discontinuous Galerkin discretization is presented in this work. The aim of this study is to solve the compressible linearized Euler\'s equation in two dimensions on structured and non structured meshes. This tool has been used as a means to study aeroacoustics phenomena. The Riemann\'s problem presented on a convective flow in Euler\'s equation is tackled by a HLL\'s method and the time integration being used is the four-stage Runge-Kutta explicit method with second order of accuracy. The computational efficiency, the convergence of the method and the accuracy are tested by comparing our results for flow simulations with those that are available in the literature. The convergence rate to high approximation order is asymptotic and it shows a result which is compatible with a discontinuous Galerkin formulation.
|
27 |
Adaptive finite element methods for multiphysics problemsBengzon, Fredrik January 2009 (has links)
In this thesis we develop and analyze the performance ofadaptive finite element methods for multiphysics problems. Inparticular, we propose a methodology for deriving computable errorestimates when solving unidirectionally coupled multiphysics problemsusing segregated finite element solvers. The error estimates are of a posteriori type and are derived using the standard frameworkof dual weighted residual estimates. A main feature of themethodology is its capability of automatically estimating thepropagation of error between the involved solvers with respect to anoverall computational goal. The a posteriori estimates are used todrive local mesh refinement, which concentrates the computationalpower to where it is most needed. We have applied and numericallystudied the methodology to several common multiphysics problems usingvarious types of finite elements in both two and three spatialdimensions. Multiphysics problems often involve convection-diffusion equations for whichstandard finite elements can be unstable. For such equations we formulatea robust discontinuous Galerkin method of optimal order with piecewiseconstant approximation. Sharp a priori and a posteriori error estimatesare proved and verified numerically. Fractional step methods are popular for simulating incompressiblefluid flow. However, since they are not genuine Galerkin methods, butrather based on operator splitting, they do not fit into the standardframework for a posteriori error analysis. We formally derive an aposteriori error estimate for a prototype fractional step method byseparating the error in a functional describing the computational goalinto a finite element discretization residual, a time steppingresidual, and an algebraic residual.
|
28 |
Finite Element Methods for Thin Structures with Applications in Solid MechanicsLarsson, Karl January 2013 (has links)
Thin and slender structures are widely occurring both in nature and in human creations. Clever geometries of thin structures can produce strong constructions while requiring a minimal amount of material. Computer modeling and analysis of thin and slender structures have their own set of problems, stemming from assumptions made when deriving the governing equations. This thesis deals with the derivation of numerical methods suitable for approximating solutions to problems on thin geometries. It consists of an introduction and four papers. In the first paper we introduce a thread model for use in interactive simulation. Based on a three-dimensional beam model, a corotational approach is used for interactive simulation speeds in combination with adaptive mesh resolution to maintain accuracy. In the second paper we present a family of continuous piecewise linear finite elements for thin plate problems. Patchwise reconstruction of a discontinuous piecewise quadratic deflection field allows us touse a discontinuous Galerkin method for the plate problem. Assuming a criterion on the reconstructions is fulfilled we prove a priori error estimates in energy norm and L2-norm and provide numerical results to support our findings. The third paper deals with the biharmonic equation on a surface embedded in R3. We extend theory and formalism, developed for the approximation of solutions to the Laplace-Beltrami problem on an implicitly defined surface, to also cover the biharmonic problem. A priori error estimates for a continuous/discontinuous Galerkin method is proven in energy norm and L2-norm, and we support the theoretical results by numerical convergence studies for problems on a sphere and on a torus. In the fourth paper we consider finite element modeling of curved beams in R3. We let the geometry of the beam be implicitly defined by a vector distance function. Starting from the three-dimensional equations of linear elasticity, we derive a weak formulation for a linear curved beam expressed in global coordinates. Numerical results from a finite element implementation based on these equations are compared with classical results.
|
29 |
Stable Embedded Grid Techniques in Computational MechanicsSanders, Jessica January 2010 (has links)
<p>Engineering mechanics problems involving interfaces, whether physical or introduced by numerical methodologies, are commonplace. Just a few examples include fracture and fault mechanics, classical contact-impact, phase boundary propagation, and fluid-structure interaction. This dissertation focuses on issues of numerical stability and accuracy that must be addressed when such interfaces are included in a realistic simulation of a physical system. </p><p>We begin by presenting a novel numerical method of fluid/structure interaction that may be applied to the problem of movable devices and ocean waves. The work is done with finite differences, large motion Lagrangian mechanics, and an eye towards creating a model in which complex rigid body dynamics can be incorporated.</p><p>We then review the many advantages of embedded mesh techniques for interface representation, and investigate a completely finite element based strategy for embedding domains. The work is seen as a precursor to robust multi-physics simulation capabilities. Special attention must be given to these techniques in terms of stable and convergent representation of surface fluxes. Mesh locking and over-constraint are particularly addressed. We show that traditional methods for enforcing continuity at embedded interfaces cannot adequately guarantee flux stability, and show a less traditional method, known as Nitsche's method, to be a stable alternative. We address the open problem of applying Nitsche's method to non-linear analysis by drawing parallels between the embedded mesh and discontinuous Galerkin (DG) methods, and propose a DG style approach to Nitsche's method. We conclude with stable interfacial fluxes for a continuity constraint for a case of embedded finite element meshes in large deformation elasticity. The general conclusion is drawn that stability must be addressed in the choice of interface treatment in computational mechanics.</p> / Dissertation
|
30 |
Analysis, implementation, and verification of a discontinuous galerkin method for prediction of storm surges and coastal deformationMirabito, Christopher Michael 14 October 2011 (has links)
Storm surge, the pileup of seawater occurring as a result of high surface stresses and strong currents generated by extreme storm events such as hurricanes, is known to cause greater loss of life than these storms' associated winds. For example, inland flooding from the storm surge along the Gulf Coast during Hurricane Katrina killed hundreds of people. Previous storms produced even larger death tolls. Simultaneously, dune, barrier island, and channel erosion taking place during a hurricane leads to the removal of major flow controls, which significantly affects inland inundation. Also, excessive sea bed scouring around pilings can compromise the structural integrity of bridges, levees, piers, and buildings.
Modeling these processes requires tightly coupling a bed morphology equation to the shallow water equations (SWE). Discontinuous Galerkin finite element methods (DGFEMs) are a natural choice for modeling this coupled system, given the need to solve these problems on large, complicated, unstructured computational meshes, as well as the desire to implement hp-adaptivity for capturing the dynamic features of the solution.
Comprehensive modeling of these processes in the coastal zone presents several challenges and open questions. Most existing hydrodynamic models use a fixed-bed approach; the bottom is not allowed to evolve in response to the fluid motion. With respect to movable-bed models, there is no single, generally accepted mathematical model in use. Numerical challenges include coupling models of processes that exhibit disparate time scales during fair weather, but possibly similar time scales during intense storms.
The main goals of this dissertation include implementing a robust, efficient, tightly-coupled morphological model using the local discontinuous Galerkin (LDG) method within the existing Advanced Circulation (ADCIRC) modeling framework, performing systematic code and model verification (using test cases with known solutions, proven convergence rates, or well-documented physical behavior), analyzing the stability and accuracy of the implemented numerical scheme by way of a priori error estimates, and ultimately laying some of the necessary groundwork needed to simultaneously model storm surges and bed morphodynamics during extreme storm events. / text
|
Page generated in 0.0715 seconds