Spelling suggestions: "subject:"nitsche"" "subject:"witsche""
1 |
Los espacios de la antropología en la obra de Robert Lehmann-Nitsche, 1894-1938Ballestero, Diego 07 March 2014 (has links)
El propósito de esta tesis doctoral es el análisis de las condiciones de posibilidad para las prácticas y el trabajo antropológico en la Argentina de fines del siglo XIX y principios del siglo XX. Especialmente, se examina la cultura material, las redes de circulación de información, los espacios de encuentro así como las prácticas de observación y registro, a través del análisis de las producciones del antropólogo alemán Robert Lehmann-Nitsche. Con este fin se recurrió a un amplio corpus documental conformado por un conjunto de fuentes editas e inéditas depositadas en diversos archivos en Argentina y Alemania. La tesis da cuenta del carácter colectivo en la construcción del conocimiento, en la cual actores e instituciones interactúan en diversos espacios. Lejos de ser otra reconstrucción histórica basada en la biografía de un personaje, esta tesis demuestra que las prácticas antropológicas no responden a un desarrollo histórico lineal ni pueden ser reducidas a una “escuela” antropológica. En este sentido revela la existencia simultánea y la superposición de una serie de prácticas y discursos que, al mismo tiempo, delimitarán y caracterizaran los espacios de la práctica antropológica y la construcción de su objeto de estudio. A través del estudio de las redes de aprovisionamiento de datos y objetos, se plantea que las intenciones de Robert Lehmann-Nitsche por insertarse dentro de los programas de investigación de las instituciones científicas alemanas, determinarán, en parte, la elección de los temas a estudiar. De la misma manera afectarán la incorporación de determinados recursos técnicos y metodológicos en la recolección, clasificación, procesamiento y envío de datos y objetos. Finalmente, el trabajo plantea la inexistencia de un programa definido para la profesionalización y la institucionalización de las prácticas antropológicas en la Argentina. De esta forma la tesis muestra que los espacios de la antropología no se refieren a espacios físicamente definidos, sino a un complejo entramado de prácticas asociadas a un conjunto de tecnologías materiales y discursivas.
|
2 |
Nitsche method for frictional contact and self-contact : Mathematical and numerical study / Méthode de Nitsche pour le contact de frottement et auto-contact : Mathématique et étude numériqueMlika, Rabii 24 January 2018 (has links)
Dans cette thèse, nous présentons et étudions une nouvelle formulation du problème de contact frottant entre deux corps élastiques se basant sur la méthode de Nitsche. Dans cette méthode les conditions de contact sont imposées faiblement, grâce à un terme additionnel consistant et stabilisé par un paramètre gamma. En premier lieu, nous introduisons, l’étude effectuée en petites déformations pour une version non biaisée de la méthode. La non-distinction entre une surface maître et une surface esclave permettera à la méthode d’être plus générique et applicable directement au problème d’auto-contact. Le cadre restrictif des petites déformations nous permet d’obtenir des résultats théoriques sur la stabilité et la convergence de la méthode. Ces résultats sont complétés par une validation numérique. Ensuite, nous introduisons l’extension de la méthode de Nitsche au cadre des grandes déformations qui est d’avantage pertinent pour les applications industrielles et les situations d’auto-contact. La méthode de Nitsche est formulée pour un matériau hyper-élastique avec frottement de Coulomb et se décline en deux versions : biaisée ou non. La formulation est généralisée à travers un paramètre theta pour couvrir toute une famille de méthodes. Chaque variante particulière a des propriétés différentes du point de vue théorique et numérique, en termes de précision et de robustesse. La méthode est testée et validée à travers plusieurs cas tests académiques et industriels. Nous effectuons aussi une étude de l’influence de l’intégration numérique sur la précision et la convergence de la méthode. Cette étude couvre une comparaison entre plusieurs schémas d’intégration proposés dans la littérature pour d’autres méthodes intégrales. / In this thesis, we present and study a new formulation of frictional contact between two elastic bodies based on Nitsche’s method. This method aims to treat the interface conditions in a weak sense, thanks to a consistent additional term stabilized with the parameter gamma. At first, we introduce the study carried out in the small strain framwork for an unbiased version of the ethod. The non-distinction between a master surface and a slave one will allow the method to be more generic and directly applicable to the self-contact problem. The restrictive framework of small strain allowed us to obtain theoretical results on the consistency and convergence of the method. Then, we present the extension of the Nitsche method to the large strain case more relevant for industrial applications and situations of self-contact. This Nitsche’s method is formulated for an hyper-elastic material and declines in the two versions: biased and unbiased. We describe a class of methods through a generalisation parameter theta . Particular variants have different properties from a numerical point of view, in terms of accuracy and robustness. To prove the accuracy of the method for large deformations, we provide several academic and industrial tests. We also study the influence of numerical quadrature on the accuarcy and convergence of the method. This study covers a comparison of several integration rules proposed in the literature for other integral methods.
|
3 |
Cut finite element methods on parametric multipatch surfacesJonsson, Tobias January 2019 (has links)
No description available.
|
4 |
Stable Embedded Grid Techniques in Computational MechanicsSanders, Jessica January 2010 (has links)
<p>Engineering mechanics problems involving interfaces, whether physical or introduced by numerical methodologies, are commonplace. Just a few examples include fracture and fault mechanics, classical contact-impact, phase boundary propagation, and fluid-structure interaction. This dissertation focuses on issues of numerical stability and accuracy that must be addressed when such interfaces are included in a realistic simulation of a physical system. </p><p>We begin by presenting a novel numerical method of fluid/structure interaction that may be applied to the problem of movable devices and ocean waves. The work is done with finite differences, large motion Lagrangian mechanics, and an eye towards creating a model in which complex rigid body dynamics can be incorporated.</p><p>We then review the many advantages of embedded mesh techniques for interface representation, and investigate a completely finite element based strategy for embedding domains. The work is seen as a precursor to robust multi-physics simulation capabilities. Special attention must be given to these techniques in terms of stable and convergent representation of surface fluxes. Mesh locking and over-constraint are particularly addressed. We show that traditional methods for enforcing continuity at embedded interfaces cannot adequately guarantee flux stability, and show a less traditional method, known as Nitsche's method, to be a stable alternative. We address the open problem of applying Nitsche's method to non-linear analysis by drawing parallels between the embedded mesh and discontinuous Galerkin (DG) methods, and propose a DG style approach to Nitsche's method. We conclude with stable interfacial fluxes for a continuity constraint for a case of embedded finite element meshes in large deformation elasticity. The general conclusion is drawn that stability must be addressed in the choice of interface treatment in computational mechanics.</p> / Dissertation
|
5 |
The Fourier-finite-element method with Nitsche-mortaringHeinrich, Bernd, Jung, Beate 01 September 2006 (has links) (PDF)
The paper deals with a combination of the
Fourier-finite-element method with the
Nitsche-finite-element method (as a mortar method).
The approach is applied to the Dirichlet problem
of the Poisson equation in three-dimensional
axisymmetric domains $\widehat\Omega$ with
non-axisymmetric data. The approximating Fourier
method yields a splitting of the 3D-problem into
2D-problems. For solving the 2D-problems on the
meridian plane $\Omega_a$,
the Nitsche-finite-element method with
non-matching meshes is applied. Some important
properties of the approximation scheme are
derived and the rate of convergence in some
$H^1$-like norm is proved to be of the type
${\mathcal O}(h+N^{-1})$ ($h$: mesh size on
$\Omega_a$, $N$: length of the Fourier sum) in
case of a regular solution of the boundary value
problem. Finally, some numerical results are
presented.
|
6 |
Nitsche- and Fourier-finite-element method for the Poisson equation in axisymmetric domains with re-entrant edgesHeinrich, Bernd, Jung, Beate 11 September 2006 (has links) (PDF)
The paper deals with a combination of the Fourier
method with the Nitsche-finite-element method
(as a mortar method). The approach is applied to
the Dirichlet problem of the Poisson equation in
threedimensional axisymmetric domains with
reentrant edges generating singularities.
The approximating Fourier method yields a
splitting of the 3D problem into 2D problems
on the meridian plane of the given domain.
For solving the 2D problems bearing corner
singularities, the Nitsche finite-element
method with non-matching meshes and mesh
grading near reentrant corners is applied.
Using the explicit representation of singular
functions, the rate of convergence of the
Fourier-Nitsche-mortaring is estimated in some
$H^1$-like norm as well as in the $L_2$-norm.
Finally, some numerical results are presented.
|
7 |
Nitsche- and Fourier-finite-element method for the Poisson equation in axisymmetric domains with re-entrant edgesHeinrich, Bernd, Jung, Beate 11 September 2006 (has links)
The paper deals with a combination of the Fourier
method with the Nitsche-finite-element method
(as a mortar method). The approach is applied to
the Dirichlet problem of the Poisson equation in
threedimensional axisymmetric domains with
reentrant edges generating singularities.
The approximating Fourier method yields a
splitting of the 3D problem into 2D problems
on the meridian plane of the given domain.
For solving the 2D problems bearing corner
singularities, the Nitsche finite-element
method with non-matching meshes and mesh
grading near reentrant corners is applied.
Using the explicit representation of singular
functions, the rate of convergence of the
Fourier-Nitsche-mortaring is estimated in some
$H^1$-like norm as well as in the $L_2$-norm.
Finally, some numerical results are presented.
|
8 |
Analysis, Control, and Design Optimization of Engineering Mechanics SystemsYedeg, Esubalewe Lakie January 2016 (has links)
This thesis considers applications of gradient-based optimization algorithms to the design and control of some mechanics systems. The material distribution approach to topology optimization is applied to design two different acoustic devices, a reactive muffler and an acoustic horn, and optimization is used to control a ball pitching robot. Reactive mufflers are widely used to attenuate the exhaust noise of internal combustion engines by reflecting the acoustic energy back to the source. A material distribution optimization method is developed to design the layout of sound-hard material inside the expansion chamber of a reactive muffler. The objective is to minimize the acoustic energy at the muffler outlet. The presence or absence of material is represented by design variables that are mapped to varying coefficients in the governing equation. An anisotropic design filter is used to control the minimum thickness of materials separately in different directions. Numerical results demonstrate that the approach can produce mufflers with high transmission loss for a broad range of frequencies. For acoustic devices, it is possible to improve their performance, without adding extended volumes of materials, by an appropriate placement of thin structures with suitable material properties. We apply layout optimization of thin sound-hard material in the interior of an acoustic horn to improve its far-field directivity properties. Absence or presence of thin sound-hard material is modeled by a surface transmission impedance, and the optimization determines the distribution of materials along a “ground structure” in the form of a grid inside the horn. Horns provided with the optimized scatterers show a much improved angular coverage, compared to the initial configuration. The surface impedance is handled by a new finite element method developed for Helmholtz equation in the situation where an interface is embedded in the computational domain. A Nitschetype method, different from the standard one, weakly enforces the impedance conditions for transmission through the interface. As opposed to a standard finite-element discretization of the problem, our method seamlessly handles both vanishing and non-vanishing interface conditions. We show the stability of the method for a quite general class of surface impedance functions, provided that possible surface waves are sufficiently resolved by the mesh. The thesis also presents a method for optimal control of a two-link ball pitching robot with the aim of throwing a ball as far as possible. The pitching robot is connected to a motor via a non-linear torsional spring at the shoulder joint. Constraints on the motor torque, power, and angular velocity of the motor shaft are included in the model. The control problem is solved by an interior point method to determine the optimal motor torque profile and release position. Numerical experiments show the effectiveness of the method and the effect of the constraints on the performance.
|
9 |
Essential boundary and interface conditions in the meshless analysis of shells. / Condições essenciais de contorno e interface na análise de cascas com métodos sem malha.Costa, Jorge Carvalho 18 December 2015 (has links)
Meshless methods provide a highly continuous approximation field, convenient for thin structures like shells. Nevertheless, the lack of Kronecker Delta property makes the formulation of essential boundary conditions not straightforward, as the trial and test fields cannot be tailored to boundary values. Similar problem arise when different approximation regions must be joined, in a multi-region problem, such as kinks, folds or joints. This work presents three approaches to impose both kinematic conditions: the well known Lagrange Multiplier method, used since the beginning of the Element Free Galerkin method; a pure penalty approach; and the recently rediscovered alternative of Nitsche\'s Method. We use the EFG discretization technique for thick Reissner-Mindlin shells and adapt the weak form as to separate displacement and rotational degrees of freedom and obtain suitable and separate stabilization parameters. This approach enables the modeling of discontinuous shells and local refinement on multi-region problems. / Métodos sem malha geram campos de aproximação com alta continuidade, convenientes para estruturas finas como cascas. No entanto, a ausência da propriedade de Delta de Kronecker dificulta a formulação de condições essenciais de contorno, já que os campos de aproximação e teste não podem ser moldados aos valores de contorno. Um problema similar aparece quando diferentes regiões de aproximação precisam ser juntadas em um problema multi-regiões como dobras, vincos ou junções. Este trabalho apresenta três métodos de imposição ambas condições cinemáticas: o já conhecido método dos multiplicadores de Lagrange, usado desde o começo do método de Galekin sem elementos (EFG); uma abordagem de penalidade pura; e o recentemente redescoberto método de Nitsche. Nós usamos a técnica de discretização com EFG para cascas espessas de Reissner-Mindlin e adaptamos a forma fraca de forma a separar graus de liberdade de deslocamento e rotação e obter coeficientes de estabilização diferentes e apropriados. Essa abordagem permite a modelagem de cascas discontínuas e o refinamento local em problemas multi-regiões.
|
10 |
Contribution au traitement des conditions limites et d'interface dans le cadre de la Méthode des Éléments FinisChouly, Franz 04 December 2013 (has links) (PDF)
Ce mémoire présente quelques contributions à la prise en compte de diverses conditions limites ou d'interface lors de la résolution de problèmes par la méthode des éléments finis. Diverses techniques sont passées en revue, avec un focus sur celle de Nitsche. Les problèmes traités proviennent de la mécanique des solides et des fluides, comme par exemple l'interaction fluide-structure ou le contact.
|
Page generated in 0.052 seconds