61 |
Numerical Simulations of Viscoelastic Flows Using the Discontinuous Galerkin MethodBurleson, John Taylor 30 August 2021 (has links)
In this work, we develop a method for solving viscoelastic fluid flows using the Navier-Stokes equations coupled with the Oldroyd-B model. We solve the Navier-Stokes equations in skew-symmetric form using the mixed finite element method, and we solve the Oldroyd-B model using the discontinuous Galerkin method. The Crank-Nicolson scheme is used for the temporal discretization of the Navier-Stokes equations in order to achieve a second-order accuracy in time, while the optimal third-order total-variation diminishing Runge-Kutta scheme is used for the temporal discretization of the Oldroyd-B equation. The overall accuracy in time is therefore limited to second-order due to the Crank-Nicolson scheme; however, a third-order Runge-Kutta scheme is implemented for greater stability over lower order Runge-Kutta schemes. We test our numerical method using the 2D cavity flow benchmark problem and compare results generated with those found in literature while discussing the influence of mesh refinement on suppressing oscillations in the polymer stress. / Master of Science / Viscoelastic fluids are a type of non-Newtonian fluid of great importance to the study of fluid flows. Such fluids exhibit both viscous and elastic behaviors. We develop a numerical method to solve the partial differential equations governing viscoelastic fluid flows using various finite element methods. Our method is then validated using previous numerical results in literature.
|
62 |
On a Family of Variational Time Discretization MethodsBecher, Simon 09 September 2022 (has links)
We consider a family of variational time discretizations that generalizes discontinuous Galerkin (dG) and continuous Galerkin-Petrov (cGP) methods. In addition to variational conditions the methods also contain collocation conditions in the time mesh points. The single family members are characterized by two parameters that represent the local polynomial ansatz order and the number of non-variational conditions, which is also related to the global temporal regularity of the numerical solution. Moreover, with respect to Dahlquist’s stability problem the variational time discretization (VTD) methods either share their stability properties with the dG or the cGP method and, hence, are at least A-stable.
With this thesis, we present the first comprehensive theoretical study of the family of VTD methods in the context of non-stiff and stiff initial value problems as well as, in combination with a finite element method for spatial approximation, in the context of parabolic problems. Here, we mainly focus on the error analysis for the discretizations. More concrete, for initial value problems the pointwise error is bounded, while for parabolic problems we rather derive error estimates in various typical integral-based (semi-)norms. Furthermore, we show superconvergence results in the time mesh points. In addition, some important concepts and key properties of the VTD methods are discussed and often exploited in the error analysis. These include, in particular, the associated quadrature formulas, a beneficial postprocessing, the idea of cascadic interpolation, connections between the different VTD schemes, and connections to other classes of methods (collocation methods, Runge-Kutta-like methods). Numerical experiments for simple academic test examples are used to highlight various properties of the methods and to verify the optimality of the proven convergence orders.:List of Symbols and Abbreviations
Introduction
I Variational Time Discretization Methods for Initial Value Problems
1 Formulation, Analysis for Non-Stiff Systems, and Further Properties
1.1 Formulation of the methods
1.1.1 Global formulation
1.1.2 Another formulation
1.2 Existence, uniqueness, and error estimates
1.2.1 Unique solvability
1.2.2 Pointwise error estimates
1.2.3 Superconvergence in time mesh points
1.2.4 Numerical results
1.3 Associated quadrature formulas and their advantages
1.3.1 Special quadrature formulas
1.3.2 Postprocessing
1.3.3 Connections to collocation methods
1.3.4 Shortcut to error estimates
1.3.5 Numerical results
1.4 Results for affine linear problems
1.4.1 A slight modification of the method
1.4.2 Postprocessing for the modified method
1.4.3 Interpolation cascade
1.4.4 Derivatives of solutions
1.4.5 Numerical results
2 Error Analysis for Stiff Systems
2.1 Runge-Kutta-like discretization framework
2.1.1 Connection between collocation and Runge-Kutta methods and its extension
2.1.2 A Runge-Kutta-like scheme
2.1.3 Existence and uniqueness
2.1.4 Stability properties
2.2 VTD methods as Runge-Kutta-like discretizations
2.2.1 Block structure of A VTD
2.2.2 Eigenvalue structure of A VTD
2.2.3 Solvability and stability
2.3 (Stiff) Error analysis
2.3.1 Recursion scheme for the global error
2.3.2 Error estimates
2.3.3 Numerical results
II Variational Time Discretization Methods for Parabolic Problems
3 Introduction to Parabolic Problems
3.1 Regularity of solutions
3.2 Semi-discretization in space
3.2.1 Reformulation as ode system
3.2.2 Differentiability with respect to time
3.2.3 Error estimates for the semi-discrete approximation
3.3 Full discretization in space and time
3.3.1 Formulation of the methods
3.3.2 Reformulation and solvability
4 Error Analysis for VTD Methods
4.1 Error estimates for the l th derivative
4.1.1 Projection operators
4.1.2 Global L2-error in the H-norm
4.1.3 Global L2-error in the V-norm
4.1.4 Global (locally weighted) L2-error of the time derivative in the H-norm
4.1.5 Pointwise error in the H-norm
4.1.6 Supercloseness and its consequences
4.2 Error estimates in the time (mesh) points
4.2.1 Exploiting the collocation conditions
4.2.2 What about superconvergence!?
4.2.3 Satisfactory order convergence avoiding superconvergence
4.3 Final error estimate
4.4 Numerical results
Summary and Outlook
Appendix
A Miscellaneous Results
A.1 Discrete Gronwall inequality
A.2 Something about Jacobi-polynomials
B Abstract Projection Operators for Banach Space-Valued Functions
B.1 Abstract definition and commutation properties
B.2 Projection error estimates
B.3 Literature references on basics of Banach space-valued functions
C Operators for Interpolation and Projection in Time
C.1 Interpolation operators
C.2 Projection operators
C.3 Some commutation properties
C.4 Some stability results
D Norm Equivalences for Hilbert Space-Valued Polynomials
D.1 Norm equivalence used for the cGP-like case
D.2 Norm equivalence used for final error estimate
Bibliography
|
63 |
The study on adaptive Cartesian grid methods for compressible flow and their applicationsLiu, Jianming January 2014 (has links)
This research is mainly focused on the development of the adaptive Cartesian grid methods for compressibl e flow. At first, the ghost cell method and its applications for inviscid compressible flow on adaptive tree Cartesian grid are developed. The proposed method is successfully used to evaluate various inviscid compressible flows around complex bodies. The mass conservation of the method is also studied by numerical analysis. The extension to three-dimensional flow is presented. Then, an h-adaptive Runge–Kutta discontinuous Galerkin (RKDG) method is presented in detail for the development of high accuracy numerical method under Cartesian grid. This method combined with the ghost cell immersed boundary method is also validated by well documented test problems involving both steady and unsteady compressible flows over complex bodies in a wide range of Mach numbers. In addition, in order to suppress the failure of preserving positivity of density or pressure, which may cause blow-ups of the high order numerical algorithms, a positivity-preserving limiter technique coupled with h-adaptive RKDG method is developed. Such a method has been successfully implemented to study flows with the large Mach number, strong shock/obstacle interactions and shock diffraction. The extension of the method to viscous flow under the adaptive Cartesian grid with hybrid overlapping bodyfitted grid is developed. The method is validated by benchmark problems and has been successfully implemented to study airfoil with ice accretion. Finally, based on an open source code, the detached eddy simulation (DES) is developed for massive separation flow, and it is used to perform the research on aerodynamic performance analysis over the wing with ice accretion.
|
64 |
Multiscale Methods and Uncertainty QuantificationElfverson, Daniel January 2015 (has links)
In this thesis we consider two great challenges in computer simulations of partial differential equations: multiscale data, varying over multiple scales in space and time, and data uncertainty, due to lack of or inexact measurements. We develop a multiscale method based on a coarse scale correction, using localized fine scale computations. We prove that the error in the solution produced by the multiscale method decays independently of the fine scale variation in the data or the computational domain. We consider the following aspects of multiscale methods: continuous and discontinuous underlying numerical methods, adaptivity, convection-diffusion problems, Petrov-Galerkin formulation, and complex geometries. For uncertainty quantification problems we consider the estimation of p-quantiles and failure probability. We use spatial a posteriori error estimates to develop and improve variance reduction techniques for Monte Carlo methods. We improve standard Monte Carlo methods for computing p-quantiles and multilevel Monte Carlo methods for computing failure probability.
|
65 |
Modélisation numérique de la propagation des ondes par une méthodeéléments finis Galerkin discontinue : prise en compte des rhéologies nonlinéaires des sols / Numerical modeling of wave propagation by a discontinuous Galerkin finite elements method : consideration of nonlinear rheologies of soilChabot, Simon 13 November 2018 (has links)
L'objectif général de la thèse est la simulation numérique des mouvements forts du sol dûs aux séismes. Les déformations importantes du sol engendrent des comportements nonlinéaires dans les couches superficielles. L'apport principal de la thèse est la prise en compte de la nonlinéarité des milieux dans un contexte éléments finis Galerkin discontinus. Différentes lois de comportement sont implémentées et analysées. Le cas particulier du modèle élastoplastique de Masing-Prandtl-Ishlinskii-Iwan (MPII) est approfondi. Cette étude est divisée en deux parties. Une première qui vise à poser la structure du problème en présentant les équations et modèles utilisés pour décrire les mouvements du sol. Dans cette partie nous présentons également la méthode d’approximation spatiale Galerkin Discontinue ainsi que les différents schémas temporels que nous avons considérés. Une attention particulière est portée sur la complexité algorithmique du modèle nonlinéaire élastoplastique MPII en vue de réduire le temps de calcul des simulations. La deuxième partie est dédiée aux applications numériques. Ces applications sont réparties en trois catégories distinctes. 1) Nous nous intéressons toutd’abord à la configuration unidimensionnelle où une seule onde de cisaillement est propagée. Dans ce contexte, un flux numérique décentré est établi et des applications aux cas nonlinéaire élastique et nonlinéaire élastoplastique sont étudiées. Une solution analytique concernant le cas nonlinéaire élastique est proposée, ce qui permet de réaliser une étude numérique de convergence. 2) Le problème unidimensionnel étendu aux trois composantes du mouvement est étudié et utilisé comme un premier pas vers le 3D compte tenu du couplage entre les ondes de cisaillement et de compression. Nous nous intéressons ici à des signaux synthétiques et réels. L’application d’une méthode permettant de réduire significativement le temps de calcul du modèle élastoplastique est détaillée. 3) Une configuration tridimensionnelle est examinée. Après différentes applications de vérification en milieu linéaire, deux cas d’étude élastoplastique sont analysés. Une première sur un mode propre d’un cube puis une seconde sur un milieu plus réaliste composé d’un bassin hémisphérique à couches sédimentaires ayant un comportement élastoplastique / The general objective of this thesis is the numerical simulation of strong ground motions due to earthquakes. Significant deformations of the soil generate nonlinear behaviors in the superficial layers. The main contribution of this work is to take into account the nonlinearity of the media in a discontinuous Galerkin finite elements context. Different constitutive laws are implemented and analyzed. The particular case of theMasing-Prandtl-Ishlinskii-Iwan (MPII) elastoplastic model is looked at in-depth. This study is divided into two parts. A first one that aims at defining the framework of the problem by presenting the equations and models used to describe the soil motion. In this part we also present the Galerkin Discontinuous spatial approximation method as well as the different temporal schemes that we considered. Particular attention is paid to the algorithmic complexity of the nonlinear elastoplastic MPII model in order to reduce the computation time of simulations. The second part is dedicated to numerical applications. These applications are divided into three distinct categories. 1) We are first interested in the one-dimensional configuration where a single shear wave is propagated. In this context, an upwind numerical flux is established and applications to nonlinear elastic and nonlinear elastoplastic cases are studied. Ananalytical solution concerning the nonlinear elastic case is proposed, which makes it possible to carry out a numerical study of convergence. 2) The one-dimensional problem extended to the three components of the motion is studied and used as a first step towards 3D applications considering the coupling between the shear and compression waves. We are interested here in synthetic and real input signals. The application of a method that significantly reduces the calculation time of the elastoplastic model
|
66 |
Résolution des équations de Maxwell-Vlasov sur maillage cartésien non conforme 2D par un solveur Galerkin discontinu / Resolution of Maxwell-Vlasov equations on 2D non conforming cartesian mesh by a discontinuous Galerkin methodMounier, Marie 19 November 2014 (has links)
Cette thèse propose l’étude d’une méthode numérique permettant de simuler un plasma. On considère un ensemble de particules, dont le mouvement est régi par l’équation de Vlasov, et qui est sensible aux forces électromagnétiques, qui proviennent des équations de Maxwell. La résolution numérique des équations de Vlasov-Maxwell est réalisée par une méthode Particle In Cell (PIC). La résolution des équations de Maxwell nécessite un maillage suffisamment fin afin de modéliser correctement les problémes multi-échelles que nous souhaitons traiter. Cependant, mailler finement tout le domaine de calcul a un coût. La nouveauté de cette thèse est de proposer un solveur PIC sur des maillages cartésiens localement raffinés, des maillages non conformes, afin de garantir la bonne modélisation du phénomène physique et d’éviter une trop forte pénalisation des temps de calcul.Nous utilisons une méthode Galerkin Discontinue en domaine temporelle (GDDT), qui offre l’avantage d’être d'une grande flexibilité dans le choix du maillage et qui est une méthode d’ordre élevé. Un point fondamental dans l’étude des solveurs PIC concerne le respect de la conservation de la charge. Nous proposons deux approches afin de traiter cet aspect. La première concerne les méthodes utilisant un système de Maxwell augmenté, dont la nouveauté a été de les étendre aux maillages non conformes. La seconde approche repose sur une méthode originale de pré-traitement du calcul du terme source de courant. / This thesis deals with the study of a numerical method to simulate a plasma. We consider a set of particles whose displacement is governed by the Vlasov equation and which creates an electromagnetic field thanks to Maxwell equations. The numerical resolution of the Vlasov-Maxwell system is performed by a Particle In Cell (PIC) method. The resolution of Maxwell equations needs a sufficiently fine mesh to correctly simulate the multi scaled problems that we have to face. Yet, a uniform fine mesh of the whole domain has a prohibitive cost. The novelty of this thesis is a PIC solver on locally refined Cartesian meshes : non conforming meshes, to guarantee the good modeling of the physical phenomena and to avoid too large CPU time. We use the Discontinuous Galerkin in Time Domain (DGTD) method which has the advantage of a great flexibility in the choice of the mesh and which is a high order method. A fundamental point in the study of PIC solvers is the respect of the charge conserving law. We propose two approaches to tackle this point. The first one deals with augmented Maxwell systems, that we have adapted to non conforming meshes. The second one deals with an original method of preprocessing of the calculation of the current source term.
|
67 |
Étude et conception d'une stratégie couplée de post-maillage/résolution pour optimiser l'efficacité numérique de la méthode Galerkin discontinue appliquée à la simulation des équations de Maxwell instationnaires / Study and design of a coupled post-meshing/solving strategy to improve the numerical efficiency of the discontinuous Galerkin method for electromagnetic computations in time domainPatrizio, Matthieu 03 May 2019 (has links)
Dans cette thèse, nous nous intéressons à l’amélioration des performances numériques dela méthode Galerkin Discontinu en Domaine Temporel (GDDT), afin de valoriser son emploi industrielpour des problèmes de propagation d’ondes électromagnétiques. Pour ce faire, nous cherchons à réduire lenombre d’éléments des maillages utilisés en appliquant une stratégie de h-déraffinement/p-enrichissement.Dans un premier temps, nous montrons que si ce type de stratégie permet d’améliorer significativementl’efficacité numérique des résolutions dans un cadre conforme, son extension aux maillages non-conformespeut s’accompagner de contre-performances rédhibitoires limitant fortement leur intérêt pratique. Aprèsavoir identifié que ces dernières sont causées par le traitement des termes de flux non-conformes, nousproposons une méthode originale de condensation afin de retrouver des performances avantageuses. Cellecise base sur une redéfinition des flux non-conformes à partir d’un opérateur de reconstruction de traces,permettant de recréer une conformité d’espaces, et d’un produit scalaire condensé, assurant un calculapproché efficace. La stabilité et la consistance du schéma GDDT ainsi défini sont établies sous certainesconditions portant sur ces deux quantités. Dans un deuxième temps, nous détaillons la construction desopérateurs de trace et des produits scalaires associés. Nous proposons alors des flux condensés pourplusieurs configurations non-conformes, et validons numériquement la convergence du schéma GDDT résultant.Puis, nous cherchons à concevoir un algorithme de h-déraffinement/p-enrichissement automatisé,dans le but de générer des maillages hp minimisant les coûts de calcul du schéma. Ce processus est traduitsous la forme d’un problème d’optimisation combinatoire sous plusieurs contraintes de natures trèsdiverses. Nous présentons alors un algorithme de post-maillage basé sur un parcours efficace de l’arbrede recherche des configurations admissibles, associé à un processus de déraffinement hiérarchique. Enfin,nous mettons en œuvre la chaîne de calcul développée sur plusieurs cas-tests d’intérêt industriel, etévaluons son apport en termes de performances numériques. / This thesis is devoted to improving the numerical efficiency of the Discontinuous Galerkinin Time Domain (DGDT) method, in order to enhance its suitability for industrial use. One can noticethat, in an hp-conforming context, increasing correlatively the approximation order and the mesh sizeis a powerful strategy to reduce numerical costs. However, in complex geometries, the mesh can beconstrainted by the presence of small-scale inner elements, leading to hp-nonconforming configurationswith hanging nodes. The first issue we are dealing with is related to the nonconforming fluxes involvedin these configurations, whose high computational costs can deter the use of hp-coarsening strategies.In order to recover a satisfactory performance level, an original flux-lumping technique is set up. Thistechnique relies on recasting hybrid fluxes into conforming ones, and is performed by introducing twoingredients : a reconstruction operator designed to map traces from each side of a nonconforming interfaceinto the same functional space, and a lumped scalar product granting efficient integral computations.The resulting DGTD scheme is then proved to be stable and consistent, under some assumptions on thelatter two elements. Subsequently, we develop a lumped flux construction routine, and show numericalconvergence results on basic hybrid configurations. In a second part, we implement an automated strategyaiming at generating efficient hp-nonconforming meshes, well-suited to the previous DGDT scheme. To doso, a post-meshing process is formalized into a constrained optimization problem. We then put forward aheuristic hp-coarsening algorithm, based on a hierarchical coarsening approach coupled with an efficientsearch over the feasible configuration tree. Lastly, we present several numerical examples related toelectromagnetic wave propagation problems, and evaluate computational cost improvements.
|
68 |
Duality-based adaptive finite element methods with application to time-dependent problemsJohansson, August January 2010 (has links)
To simulate real world problems modeled by differential equations, it is often not sufficient to consider and tackle a single equation. Rather, complex phenomena are modeled by several partial dierential equations that are coupled to each other. For example, a heart beat involve electric activity, mechanics of the movement of the walls and valves, as well as blood fow - a true multiphysics problem. There may also be ordinary differential equations modeling the reactions on a cellular level, and these may act on a much finer scale in both space and time. Determining efficient and accurate simulation tools for such multiscalar multiphysics problems is a challenge. The five scientific papers constituting this thesis investigate and present solutions to issues regarding accurate and efficient simulation using adaptive finite element methods. These include handling local accuracy through submodeling, analyzing error propagation in time-dependent multiphysics problems, developing efficient algorithms for adaptivity in time and space, and deriving error analysis for coupled PDE-ODE systems. In all these examples, the error is analyzed and controlled using the framework of dual-weighted residuals, and the spatial meshes are handled using octree based data structures. However, few realistic geometries fit such grid and to address this issue a discontinuous Galerkin Nitsche method is presented and analyzed.
|
69 |
High-order discontinuous Galerkin methods for incompressible flowsVillardi de Montlaur, Adeline de 22 September 2009 (has links)
Aquesta tesi doctoral proposa formulacions de Galerkin discontinu (DG) d'alt ordre per fluxos viscosos incompressibles. Es desenvolupa un nou mètode de DG amb penalti interior (IPM-DG), que condueix a una forma feble simètrica i coerciva pel terme de difusió, i que permet assolir una aproximació espacial d'alt ordre. Aquest mètode s'aplica per resoldre les equacions de Stokes i Navier-Stokes. L'espai d'aproximació de la velocitat es descompon dins de cada element en una part solenoidal i una altra irrotacional, de manera que es pot dividir la forma dèbil IPM-DG en dos problemes desacoblats. El primer permet el càlcul de les velocitats i de les pressions híbrides, mentre que el segon calcula les pressions en l'interior dels elements. Aquest desacoblament permet una reducció important del número de graus de llibertat tant per velocitat com per pressió. S'introdueix també un paràmetre extra de penalti resultant en una formulació DG alternativa per calcular les velocitats solenoidales, on les pressions no apareixen. Les pressions es poden calcular com un post-procés de la solució de les velocitats. Es contemplen altres formulacions DG, com per exemple el mètode Compact Discontinuous Galerkin, i es comparen al mètode IPM-DG. Es proposen mètodes implícits de Runge-Kutta d'alt ordre per problemes transitoris incompressibles, permetent obtenir esquemes incondicionalment estables i amb alt ordre de precisió temporal. Les equacions de Navier-Stokes incompressibles transitòries s'interpreten com un sistema de Equacions Algebraiques Diferencials, és a dir, un sistema d'equacions diferencials ordinàries corresponent a la equació de conservació del moment, més les restriccions algebraiques corresponent a la condició d'incompressibilitat. Mitjançant exemples numèrics es mostra l'aplicabilitat de les metodologies proposades i es comparen la seva eficiència i precisió. / This PhD thesis proposes divergence-free Discontinuous Galerkin formulations providing high orders of accuracy for incompressible viscous flows. A new Interior Penalty Discontinuous Galerkin (IPM-DG) formulation is developed, leading to a symmetric and coercive bilinear weak form for the diffusion term, and achieving high-order spatial approximations. It is applied to the solution of the Stokes and Navier-Stokes equations. The velocity approximation space is decomposed in every element into a solenoidal part and an irrotational part. This allows to split the IPM weak form in two uncoupled problems. The first one solves for velocity and hybrid pressure, and the second one allows the evaluation of pressures in the interior of the elements. This results in an important reduction of the total number of degrees of freedom for both velocity and pressure. The introduction of an extra penalty parameter leads to an alternative DG formulation for the computation of solenoidal velocities with no presence of pressure terms. Pressure can then be computed as a post-process of the velocity solution. Other DG formulations, such as the Compact Discontinuous Galerkin method, are contemplated and compared to IPM-DG. High-order Implicit Runge-Kutta methods are then proposed to solve transient incompressible problems, allowing to obtain unconditionally stable schemes with high orders of accuracy in time. For this purpose, the unsteady incompressible Navier-Stokes equations are interpreted as a system of Differential Algebraic Equations, that is, a system of ordinary differential equations corresponding to the conservation of momentum equation, plus algebraic constraints corresponding to the incompressibility condition. Numerical examples demonstrate the applicability of the proposed methodologies and compare their efficiency and accuracy.
|
70 |
A Hybrid Spectral-Element / Finite-Element Time-Domain Method for Multiscale Electromagnetic SimulationsChen, Jiefu January 2010 (has links)
<p>In this study we propose a fast hybrid spectral-element time-domain (SETD) / finite-element time-domain (FETD) method for transient analysis of multiscale electromagnetic problems, where electrically fine structures with details much smaller than a typical wavelength and electrically coarse structures comparable to or larger than a typical wavelength coexist.</p><p>Simulations of multiscale electromagnetic problems, such as electromagnetic interference (EMI), electromagnetic compatibility (EMC), and electronic packaging, can be very challenging for conventional numerical methods. In terms of spatial discretization, conventional methods use a single mesh for the whole structure, thus a high discretization density required to capture the geometric characteristics of electrically fine structures will inevitably lead to a large number of wasted unknowns in the electrically coarse parts. This issue will become especially severe for orthogonal grids used by the popular finite-difference time-domain (FDTD) method. In terms of temporal integration, dense meshes in electrically fine domains will make the time step size extremely small for numerical methods with explicit time-stepping schemes. Implicit schemes can surpass stability criterion limited by the Courant-Friedrichs-Levy (CFL) condition. However, due to the large system matrices generated by conventional methods, it is almost impossible to employ implicit schemes to the whole structure for time-stepping.</p><p>To address these challenges, we propose an efficient hybrid SETD/FETD method for transient electromagnetic simulations by taking advantages of the strengths of these two methods while avoiding their weaknesses in multiscale problems. More specifically, a multiscale structure is divided into several subdomains based on the electrical size of each part, and a hybrid spectral-element / finite-element scheme is proposed for spatial discretization. The hexahedron-based spectral elements with higher interpolation degrees are efficient in modeling electrically coarse structures, and the tetrahedron-based finite elements with lower interpolation degrees are flexible in discretizing electrically fine structures with complex shapes. A non-spurious finite element method (FEM) as well as a non-spurious spectral element method (SEM) is proposed to make the hybrid SEM/FEM discretization work. For time integration we employ hybrid implicit / explicit (IMEX) time-stepping schemes, where explicit schemes are used for electrically coarse subdomains discretized by coarse spectral element meshes, and implicit schemes are used to overcome the CFL limit for electrically fine subdomains discretized by dense finite element meshes. Numerical examples show that the proposed hybrid SETD/FETD method is free of spurious modes, is flexible in discretizing sophisticated structure, and is more efficient than conventional methods for multiscale electromagnetic simulations.</p> / Dissertation
|
Page generated in 0.1039 seconds