• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 24
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 171
  • 171
  • 98
  • 75
  • 61
  • 40
  • 32
  • 26
  • 25
  • 25
  • 23
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Enriched Space-Time Finite Element Methods for Structural Dynamics Applications

Alpert, David N. 16 September 2013 (has links)
No description available.
92

Nonlinear Viscoelastic Wave Propagation in Brain Tissue

Laksari, Kaveh January 2013 (has links)
A combination of theoretical, numerical, and experimental methods were utilized to determine that shock waves can form in brain tissue from smooth boundary conditions. The conditions that lead to the formation of shock waves were determined. The implication of this finding was that the high gradients of stress and strain that could occur at the shock wave front could contribute to mechanism of brain injury in blast loading conditions. The approach consisted of three major steps. In the first step, a viscoelastic constitutive model of bovine brain tissue under finite step-and-hold uniaxial compression with 10 1/s ramp rate and 20 s hold time has been developed. The assumption of quasi-linear viscoelasticity (QLV) was validated for strain levels of up to 35%. A generalized Rivlin model was used for the isochoric part of the deformation and it was shown that at least three terms (C_10, C_01 and C_11) are needed to accurately capture the material behavior. Furthermore, for the volumetric deformation, a linear bulk modulus model was used and the extent of material incompressibility was studied. The hyperelastic material parameters were determined through extracting and fitting to two isochronous curves (0.06 s and 14 s) approximating the instantaneous and steady-state elastic responses. Viscoelastic relaxation was characterized at five decay rates (100, 10, 1, 0.1, 0 1/s) and the results in compression and their extrapolation to tension were compared against previous models. In the next step, a framework for understanding the propagation of stress waves in brain tissue under blast loading was developed. It was shown that tissue nonlinearity and rate dependence are key parameters in predicting the mechanical behavior under such loadings, as they determine whether traveling waves could become steeper and eventually evolve into shock discontinuities. To investigate this phenomenon, the QLV material model developed based on finite compression results mentioned above was extended to blast loading rates, by utilizing the stress data published on finite torsion of brain tissue at high rates (up to 700 1/s). It was shown that development of shock waves is possible inside the head in response to compressive pressure waves from blast explosions. Furthermore, it was argued that injury to the nervous tissue at the microstructural level could be attributed to the high stress and strain gradients with high temporal rates generated at the shock front and this was proposed as a mechanism of injury in brain tissue. In the final step, the phenomenon of shock wave formation and propagation in brain tissue was further studied by developing a one-dimensional model of brain tissue using the Discontinuous Galerkin finite element method. This model is capable of capturing high-gradient waves with higher accuracy than commercial finite element software. The deformation of brain tissue was investigated under displacement input and pressure input boundary conditions relevant to blast over-pressure reported in the literature. It was shown that a continuous wave can become a shock wave as it propagates in the tissue when the initial changes in acceleration are beyond a certain limit. The high spatial gradients of stress and strain at the shock front cause large relative motions at the cellular scale at high temporal rates even when the maximum strains and stresses are relatively low. This gradient-induced local deformation occurs away from the boundary and can therefore contribute to the diffuse nature of blast-induced injuries.   / Mechanical Engineering
93

A Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid (RKDG-DGF) Method to Near-field Early-time Underwater Explosion (UNDEX) Simulations

Park, Jinwon 22 September 2008 (has links)
A coupled solution approach is presented for numerically simulating a near-field underwater explosion (UNDEX). An UNDEX consists of a complicated sequence of events over a wide range of time scales. Due to the complex physics, separate simulations for near/far-field and early/late-time are common in practice. This work focuses on near-field early-time UNDEX simulations. Using the assumption of compressible, inviscid and adiabatic flow, the fluid flow is governed by a set of Euler fluid equations. In practical simulations, we often encounter computational difficulties that include large displacements, shocks, multi-fluid flows with cavitation, spurious waves reflecting from boundaries and fluid-structure coupling. Existing methods and codes are not able to simultaneously consider all of these characteristics. A robust numerical method that is capable of treating large displacements, capturing shocks, handling two-fluid flows with cavitation, imposing non-reflecting boundary conditions (NRBC) and allowing the movement of fluid grids is required. This method is developed by combining numerical techniques that include a high-order accurate numerical method with a shock capturing scheme, a multi-fluid method to handle explosive gas-water flows and cavitating flows, and an Arbitrary Lagrangian Eulerian (ALE) deformable fluid mesh. These combined approaches are unique for numerically simulating various near-field UNDEX phenomena within a robust single framework. A review of the literature indicates that a fully coupled methodology with all of these characteristics for near-field UNDEX phenomena has not yet been developed. A set of governing equations in the ALE description is discretized by a Runge Kutta Discontinuous Galerkin (RKDG) method. For multi-fluid flows, a Direct Ghost Fluid (DGF) Method coupled with the Level Set (LS) interface method is incorporated in the RKDG framework. The combination of RKDG and DGF methods (RKDG-DGF) is the main contribution of this work which improves the quality and stability of near-field UNDEX flow simulations. Unlike other methods, this method is simpler to apply for various UNDEX applications and easier to extend to multi-dimensions. / Ph. D.
94

On the Formulation of a Hybrid Discontinuous Galerkin Finite Element Method (DG-FEM) for Multi-layered Shell Structures

Li, Tianyu 07 November 2016 (has links)
A high-order hybrid discontinuous Galerkin finite element method (DG-FEM) is developed for multi-layered curved panels having large deformation and finite strain. The kinematics of the multi-layered shells is presented at first. The Jacobian matrix and its determinant are also calculated. The weak form of the DG-FEM is next presented. In this case, the discontinuous basis functions can be employed for the displacement basis functions. The implementation details of the nonlinear FEM are next presented. Then, the Consistent Orthogonal Basis Function Space is developed. Given the boundary conditions and structure configurations, there will be a unique basis function space, such that the mass matrix is an accurate diagonal matrix. Moreover, the Consistent Orthogonal Basis Functions are very similar to mode shape functions. Based on the DG-FEM, three dedicated finite elements are developed for the multi-layered pipes, curved stiffeners and multi-layered stiffened hydrofoils. The kinematics of these three structures are presented. The smooth configuration is also obtained, which is very important for the buckling analysis with large deformation and finite strain. Finally, five problems are solved, including sandwich plates, 2-D multi-layered pipes, 3-D multi-layered pipes, stiffened plates and stiffened multi-layered hydrofoils. Material and geometric nonlinearities are both considered. The results are verified by other papers' results or ANSYS. / Master of Science
95

Utilisation des méthodes Galerkin discontinues pour la résolution de l'hydrodynamique Lagrangienne bi-dimentsionnelle / A high-order Discontinuous Galerkin discretization for solving two-dimensional Lagrangian hydrodynamics

Vilar, François 16 November 2012 (has links)
Le travail présenté ici avait pour but le développement d'un schéma de type Galerkin discontinu (GD) d'ordre élevé pour la résolution des équations de la dynamique des gaz écrites dans un formalisme Lagrangien total, sur des maillages bi-dimensionnels totalement déstructurés. À cette fin, une méthode progressive a été utilisée afin d'étudier étape par étape les difficultés numériques inhérentes à la discrétisation Galerkin discontinue ainsi qu'aux équations de la dynamique des gaz Lagrangienne. Par conséquent, nous avons développé dans un premier temps des schémas de type Galerkin discontinu jusqu'à l'ordre trois pour la résolution des lois de conservation scalaires mono-dimensionnelles et bi-dimensionnelles sur des maillages déstructurés. La particularité principale de la discrétisation GD présentée est l'utilisation des bases polynomiales de Taylor. Ces dernières permettent, dans le cadre de maillages bi-dimensionnels déstructurés, une prise en compte globale et unifiée des différentes géométries. Une procédure de limitation hiérarchique, basée aux noeuds et préservant les extrema réguliers a été mise en place, ainsi qu'une forme générale des flux numériques assurant une stabilité globale L_2 de la solution. Ensuite, nous avons tâché d'appliquer la discrétisation Galerkin discontinue développée aux systèmes mono-dimensionnels de lois de conservation comme celui de l'acoustique, de Saint-Venant et de la dynamique des gaz Lagrangienne. Nous avons noté au cours de cette étude que l'application directe de la limitation mise en place dans le cadre des lois de conservation scalaires, aux variables physiques des systèmes mono-dimensionnels étudiés provoquait l'apparition d'oscillations parasites. En conséquence, une procédure de limitation basée sur les variables caractéristiques a été développée. Dans le cas de la dynamique des gaz, les flux numériques ont été construits afin que le système satisfasse une inégalité entropique globale. Fort de l'expérience acquise, nous avons appliqué la discrétisation GD mise en place aux équations bi-dimensionnelles de la dynamique des gaz, écrites dans un formalisme Lagrangien total. Dans ce cadre, le domaine de référence est fixe. Cependant, il est nécessaire de suivre l'évolution temporelle de la matrice jacobienne associée à la transformation Lagrange-Euler de l'écoulement, à savoir le tenseur gradient de déformation. Dans le travail présent, la transformation résultant de l'écoulement est discrétisée de manière continue à l'aide d'une base Éléments Finis. Cela permet une approximation du tenseur gradient de déformation vérifiant l'identité essentielle de Piola. La discrétisation des lois de conservation physiques sur le volume spécifique, le moment et l'énergie totale repose sur une méthode Galerkin discontinu. Le schéma est construit de sorte à satisfaire de manière exacte la loi de conservation géométrique (GCL). Dans le cas du schéma d'ordre trois, le champ de vitesse étant quadratique, la géométrie doit pouvoir se courber. Pour ce faire, des courbes de Bézier sont utilisées pour la paramétrisation des bords des cellules du maillage. Nous illustrons la robustesse et la précision des schémas mis en place à l'aide d'un grand nombre de cas tests pertinents, ainsi que par une étude de taux de convergence. / The intent of the present work was the development of a high-order discontinuous Galerkin scheme for solving the gas dynamics equations written under total Lagrangian form on two-dimensional unstructured grids. To achieve this goal, a progressive approach has been used to study the inherent numerical difficulties step by step. Thus, discontinuous Galerkin schemes up to the third order of accuracy have firstly been implemented for the one-dimensional and two-dimensional scalar conservation laws on unstructured grids. The main feature of the presented DG scheme lies on the use of a polynomial Taylor basis. This particular choice allows in the two-dimensional case to take into general unstructured grids account in a unified framework. In this frame, a vertex-based hierarchical limitation which preserves smooth extrema has been implemented. A generic form of numerical fluxes ensuring the global stability of our semi-discrete discretization in the $L_2$ norm has also been designed. Then, this DG discretization has been applied to the one-dimensional system ofconservation laws such as the acoustic system, the shallow-water one and the gas dynamics equations system written in the Lagrangian form. Noticing that the application of the limiting procedure, developed for scalar equations, to the physical variables leads to spurious oscillations, we have described a limiting procedure based on the characteristic variables. In the case of the one-dimensional gas dynamics case, numerical fluxes have been designed so that our semi-discrete DG scheme satisfies a global entropy inequality. Finally, we have applied all the knowledge gathered to the case of the two-dimensional gas dynamics equation written under total Lagrangian form. In this framework, the computational grid is fixed, however one has to follow the time evolution of the Jacobian matrix associated to the Lagrange-Euler flow map, namely the gradient deformation tensor. In the present work, the flow map is discretized by means of continuous mapping, using a finite element basis. This provides an approximation of the deformation gradient tensor which satisfies the important Piola identity. The discretization of the physical conservation laws for specific volume, momentum and total energy relies on a discontinuous Galerkin method. The scheme is built to satisfying exactly the Geometric Conservation Law (GCL). In the case of the third-order scheme, the velocity field being quadratic we allow the geometry to curve. To do so, a Bezier representation is employed to define the mesh edges. We illustrate the robustness and the accuracy of the implemented schemes using several relevant test cases and performing rate convergences analysis.
96

A posteriorní odhady chyby nespojité Galerkinovy metody pro eliptické a parabolické úlohy / A posteriori error estimates of discontinuous Galerkin method for elliptic and parabolic methods

Grubhofferová, Pavla January 2013 (has links)
The presented work deals with the discontinuous Galerkin method with the anisotropic mesh adaptation for stationary convection-diffusion problems. Basic definitions are included in an introduction where we also present the used method. The following parts describe various methods for evaluating a Riemann metric, which is necessary for anisotropic mesh adaptation. The most important part of work follows - numerical experiments carried out with ADGFEM and ANGENER software packages. In these experiments, we compare different approaches for the definition of Riemann metrics and compare their efficiency. The main output of this thesis are subroutines for evaluation of the Riemann metric including its source code.
97

Couplage pour l'aéroacoustique de schémas aux différences finies en maillage structuré avec des schémas de type éléments finis discontinus en maillage non structuré / Coupling between finite differences schemes on structured meshes with discontinuous Galerkin schemes on unstructured meshed for computational aeroacoustics

Léger, Raphaël 05 December 2011 (has links)
Cette thèse vise à étudier le couplage entre méthodes de Galerkine discontinue (DG) et méthodes de différences finies (DF) en maillages hybrides non structuré / cartésien, en vue d'applications en aéroacoustique numérique. L'idée d'une telle approche consiste à pouvoir tirer profit localement des avantages respectifs de ces méthodes, soit, en d'autres termes, à pouvoir prendre en compte la présence de géométries complexes par une méthode DG en maillage non structuré, et les zones qui en sont suffisamment éloignées par une méthode DF en maillage cartésien, moins coûteuse. Plus précisément, il s'agit de concevoir un algorithme d'hybridation de ces deux types de schémas pour l'approximation des équations d'Euler linéarisées, puis d'évaluer avec attention le comportement numérique des solutions qui en sont issues. De par le fait qu'aucun résultat théorique ne semble actuellement atteignable dans un cas général, cette étude est principalement fondée sur une démarche d'expérimentation numérique. Par ailleurs, l'intérêt d'une telle hybridation est illustré par son application à un calcul de propagation acoustique dans un cas réaliste / This thesis aims at studying coupling techniques between Discontinuous Galerkin (DG) and finite difference (FD) schemes in a non-structured / Cartesian hybrid-mesh context,in the framework of Aeroacoustics computations. The idea behind such an approach is the possibility to locally take advantage of the qualities of each method. In other words, the goal is to be able to deal with complex geometries using a DG scheme on a non-structured mesh in their neighborhood, while solving the rest of the domain using a FD scheme on a cartesian grid, in order to alleviate the needs in computational resources. More precisely, this work aims at designing an hybridization algorithm between these two types of numerical schemes, in the framework of the approximation of the solutions of the Linearized Euler Equations. Then, the numerical behaviour of hybrid solutions is cautiously evaluated. Due to the fact that no theoretical result seems achievable at the present time, this study is mainly based on numerical experiments. What's more, the interest of such an hybridization is illustrated by its application to an acoustic propagation computation in a realistic case
98

Numerical simulation of depth-averaged flows models : a class of Finite Volume and discontinuous Galerkin approaches / Simulation numérique de modèles d'écoulement type "depth averaged" : une classe de schémas Volumes Finis et Galerkin discontinu

Duran, Arnaud 17 October 2014 (has links)
Ce travail est consacré au développement de schémas numériques pour approcher les solutions de modèles d'écoulement type “depth averaged”. Dans un premier temps, nous détaillons la construction d'approches Volumes Finis pour le système Shallow Water avec termes sources sur maillages non structurés. En se basant sur une reformulation appropriée des équations, nous mettons en place un schéma équilibré et préservant la positivité de la hauteur d'eau, et suggérons des extensions MUSCL adaptées. La méthode est capable de gérer des topographies irrégulières et exhibe de fortes propriétés de stabilité. L'inclusion des termes de friction fait l'objet d'une analyse poussée, aboutissant à l'établissement d'une propriété type “Asymptotic Preserving” à travers l'amélioration d'un autre récent schéma Volumes Finis. La seconde composante de cette étude concerne les méthodes Elements Finis type Galerkin discontinu. Certaines des idées avancées dans le contexte Volumes Finis sont employées pour aborder le système Shallow Water surmaillages triangulaires. Des résultats numériques sont exposés et la méthode se révèle bien adaptée à la description d'une large variété d'écoulements. Partant de ces observations nous proposons finalement d'exploiter ces caractéristiques pour étendre l'approche à une nouvelle famille d'équations type Green-Nadghi. Des validations numériques sont également proposées pour valider le modèle numérique. / This work is devoted to the development of numerical schemes to approximatesolutions of depth averaged flow models. We first detail the construction of Finite Volume approaches for the Shallow Water system with source terms on unstructured meshes. Based on a suitable reformulation of the equations, we implement a well-balanced and positive preserving approach, and suggest adapted MUSCL extensions. The method is shown to handle irregular topography variations and demonstrates strong stabilities properties. The inclusion of friction terms is subject to a thorough analysis, leading to the establishment of some Asymptotic Preserving property through the enhancement of another recent Finite Volume scheme.The second aspect of this study concerns discontinuous Galerkin Finite Elementmethods. Some of the ideas advanced in the Finite Volume context areemployed to broach the Shallow Water system on triangular meshes. Numericalresults are exposed and the method turns out to be well suited to describe a large variety of flows. On these observations we finally propose to exploit its features to extend the approach to a new family of Green-Nadghi equations. Numerical experiments are also proposed to validate this numerical model.
99

O método de Galerkin descontínuo aplicado na investigação de um problema de elasticidade anisotrópica / The discontinuous Galerkin method applied to the investigation of an anisotropic elasticity problem

Sampaio, Maria do Socorro Martins 08 July 2009 (has links)
Estuda-se o problema de equilíbrio sem força de corpo de uma esfera anisotrópica sob compressão radial uniformemente distribuída sobre o seu contorno no contexto da teoria da elasticidade linear clássica. A solução deste problema prediz o fenômeno inaceitável da auto-intersecção em uma região próxima ao centro da esfera para uma dada faixa de parâmetros materiais. Sob o contexto de uma teoria de minimização do funcional de energia potencial total da elasticidade linear clássica com a restrição de que o determinante do gradiente da função mudança de configuração seja injetivo, este fenômeno é eliminado. Aplicam-se duas formulações do Método dos Elementos Finitos de Galerkin Descontínuo (MEFGD) para obter soluções aproximadas para o problema de equilíbrio da esfera sem restrição. A primeira formulação do MEFGD aproxima diretamente os campos de deslocamento e deformação infinitesimal. A consideração do campo adicional de deformação na formulação do MEFGD aumenta o número de graus de liberdade associados aos nós da malha de elementos finitos e, consequentemente, o custo computacional. Com o objetivo de reduzir o número de graus de liberdade, introduz-se neste trabalho uma formulação alternativa do MEFGD. Nesta formulação, o campo de deformação infinitesimal não é obtido diretamente da inversão do sistema de equações resultante, mas sim por pós-processamento, a partir do campo de deslocamento aproximado. As soluções aproximadas obtidas com ambas as formulações do MEFGD são comparadas com a solução exata do problema sem restrição e com soluções aproximadas obtidas com o Método dos Elementos Finitos de Galerkin Clássico (MEFGC). Ambas as formulações do MEFGD fornecem melhores aproximações para a solução exata do que as aproximações obtidas com o MEFGC. Os erros entre a solução exata e as soluções aproximadas obtidas com a formulação alternativa do MEFGD são um pouco maiores do que os erros correspondentes obtidos com a formulação original do MEFGD. Este aumento nos erros é compensado pelo menor esforço computacional exigido pela formulação alternativa. Este trabalho serve de base para o estudo de problemas com restrição de injetividade utilizando o método de Galerkin descontínuo. / The equilibrium problem without body force of an anisotropic sphere under radial compression that is uniformly distributed on the sphere\'s boundary is investigated in the context of the classical linear elasticity theory. The solution of this problem predicts the unacceptable phenomenon of self-intersection in a vicinity of the center of the sphere for a given range of material parameters. This phenomenon can be eliminated in the context of a theory that minimizes the total potential energy of classical linear elasticity subjected to the restriction that the deformation field be injective. Two formulations of the Finite Element Method using Discontinuous Galerkin (MEFGD) are used to obtain approximate solutions for the unconstrained problem. The first formulation of the MEFGD approximates both the displacement and the strain fields. The consideration of the strain as an additional field in the formulation of the MEFGD increases the number of degrees of freedom associated to the finite elements and, therefore, the computational cost. With the objective of reducing the number of degrees of freedom, an alternative formulation of the MEFGD is introduced in this work. In this formulation, the strain field is not obtained directly from the inversion of the resulting linear system of equations, but from a post-processing calculation using the approximate displacement field. The approximate solutions obtained with both formulations of the MEFGD are compared with the exact solution of the problem without restriction and with approximate solutions obtained with the Finite Element Method using Classical Galerkin (MEFGC). Both formulations of the MEFGD yield better approximations for the exact solution than the approximations obtained with the MEFGC. The errors between the exact solution and the approximate solutions obtained with the alternative formulation of the MEFGD are slightly higher than the corresponding errors obtained with the original formulation of the MEFGD. These errors are compensated by the fact that the alternative formulation requires less computational effort than the computational effort required by the original formulation. This work serves as a basis for the study of problems with the injectivity restriction using the discontinuous Galerkin method.
100

Conditions aux limites absorbantes enrichies pour l'équation des ondes acoustiques et l'équation d'Helmholtz / Enriched absorbing boundary conditions for the acoustic wave equation and the Helmholtz equation

Duprat, Véronique 06 December 2011 (has links)
Mes travaux de thèse portent sur la construction de conditions aux limites absorbantes (CLAs) pour des problèmes de propagation d'ondes posés dans des milieux limités par des surfaces régulières. Ces conditions sont nouvelles car elles prennent en compte non seulement les ondes proagatives (comme la plupart des CLAs existantes) mais aussi les ondes évanescentes et rampantes. Elles sont donc plus performantes que les conditions existantes. De plus, elles sont facilement implémentables dans un schéma d'éléments finis de type Galerkine Discontinu (DG) et ne modifie pas la condition de stabilité de Courant-Friedrichs-Lewy (CFL). Ces CLAs ont été implémentées dans un code simulant la propagation des ondes acoustiques ainsi que dans un code simulant la propagation des ondes en régime harmonique. Les comparaisons réalisées entre les nouvelles conditions et celles qui sont les plus utilisées dans la littérature montrent que prendre en compte les ondes évanescentes et les ondes rampantes permet de diminuer les réflexions issues de la frontière artificielle et donc de rapprocher la frontière artificielle du bord de l'obstacle. On limite ainsi les coûts de calcul, ce qui est un des avantages de mes travaux. De plus, compte tenu du fait que les nouvelles CLAs sont écrites pour des frontières quelconques, elles permettent de mieux adapter le domaine de calcul à la forme de l'obstacle et permettent ainsi de diminuer encore plus les coûts de calcul numérique. / In my PhD, I have worked on the construction of absorbing boundary conditions (ABCs) designed for wave propagation problems set in domains bounded by regular surfaces. These conditions are new since they take into account not only propagating waves (as most of the existing ABCs) but also evanescent and creeping waves. Therefore, they outperform the existing ABCs. Moreover, they can be easily implemented in a discontinuous Galerkin finite element scheme and they do not change the Courant-Friedrichs-Lewy stability condition. These ABCs have been implemented in two codes that respectively simulate the propagation of acoustic waves and harmonic waves. The comparisons performed between these ABCs and the ABCs mostly used in the litterature show that when we take into account evanescent and creeping waves, we reduce the reflections coming from the artificial boundary. Therefore, thanks to these new ABCs, the artificial boundary can get closer to the obstacle. Consequently, we reduce the computational costs which is one of the advantages of my work. Moreover, since these new ABCs are written for any kind of boundary, we can adapt the shape of the computational domain and thus we can reduce again the computational costs.

Page generated in 0.11 seconds