• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 16
  • 16
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cut finite element methods on parametric multipatch surfaces

Jonsson, Tobias January 2019 (has links)
No description available.
2

Finite Element Methods for Thin Structures with Applications in Solid Mechanics

Larsson, Karl January 2013 (has links)
Thin and slender structures are widely occurring both in nature and in human creations. Clever geometries of thin structures can produce strong constructions while requiring a minimal amount of material. Computer modeling and analysis of thin and slender structures have their own set of problems, stemming from assumptions made when deriving the governing equations. This thesis deals with the derivation of numerical methods suitable for approximating solutions to problems on thin geometries. It consists of an introduction and four papers. In the first paper we introduce a thread model for use in interactive simulation. Based on a three-dimensional beam model, a corotational approach is used for interactive simulation speeds in combination with adaptive mesh resolution to maintain accuracy. In the second paper we present a family of continuous piecewise linear finite elements for thin plate problems. Patchwise reconstruction of a discontinuous piecewise quadratic deflection field allows us touse a discontinuous Galerkin method for the plate problem. Assuming a criterion on the reconstructions is fulfilled we prove a priori error estimates in energy norm and L2-norm and provide numerical results to support our findings. The third paper deals with the biharmonic equation on a surface embedded in R3. We extend theory and formalism, developed for the approximation of solutions to the Laplace-Beltrami problem on an implicitly defined surface, to also cover the biharmonic problem. A priori error estimates for a continuous/discontinuous Galerkin method is proven in energy norm and L2-norm, and we support the theoretical results by numerical convergence studies for problems on a sphere and on a torus. In the fourth paper we consider finite element modeling of curved beams in R3. We let the geometry of the beam be implicitly defined by a vector distance function. Starting from the three-dimensional equations of linear elasticity, we derive a weak formulation for a linear curved beam expressed in global coordinates. Numerical results from a finite element implementation based on these equations are compared with classical results.
3

Discontinuous Galerkin methods for spectral wave/circulation modeling

Meixner, Jessica Delaney 03 October 2013 (has links)
Waves and circulation processes interact in daily wind and tide driven flows as well as in more extreme events such as hurricanes. Currents and water levels affect wave propagation and the location of wave-breaking zones, while wave forces induce setup and currents. Despite this interaction, waves and circulation processes are modeled separately using different approaches. Circulation processes are represented by the shallow water equations, which conserve mass and momentum. This approach for wind-generated waves is impractical for large geographic scales due to the fine resolution that would be required. Therefore, wind-waves are instead represented in a spectral sense, governed by the action balance equation, which propagates action density through both geographic and spectral space. Even though wind-waves and circulation are modeled separately, it is important to account for their interactions by coupling their respective models. In this dissertation we use discontinuous-Galerkin (DG) methods to couple spectral wave and circulation models to model wave-current interactions. We first develop, implement, verify and validate a DG spectral wave model, which allows for the implementation of unstructured meshes in geographic space and the utility of adaptive, higher-order approximations in both geographic and spectral space. We then couple the DG spectral wave model to an existing DG circulation model, which is run on the same geographic mesh and allows for higher order information to be passed between the two models. We verify and validate coupled wave/circulation model as well as analyzing the error of the coupled wave/circulation model. / text
4

Aproximace problémů nenewtonovské mechaniky tekutin metodou konečných prvků / Finite Element Approximation of Problems in Non-Newtonian Fluid Mechanics

Hirn, Adrian January 2012 (has links)
This dissertation is devoted to the finite element (FE) approximation of equations describing the motion of a class of non-Newtonian fluids. The main focus is on incompressible fluids whose viscosity nonlinearly depends on the shear rate and pressure. The equations of motion are discretized with equal-order d-linear finite elements, which fail to satisfy the inf-sup stability condition. In this thesis a stabilization technique for the pressure-gradient is proposed that is based on the well-known local projection stabilization (LPS) method. If the viscosity solely depends on the shear rate, the well-posedness of the stabilized discrete systems is shown and a priori error estimates quantifying the convergence of the method are proven. In the shear thinning case, the derived error estimates provide optimal rates of convergence with respect to the regularity of the solution. As is well-known, the Galerkin FE method may suffer from instabilities resulting not only from lacking inf-sup stability but also from dominating convection. The proposed LPS approach is then extended in order to cope with both instability phenomena. Finally, shear-rate- and pressure-dependent viscosities are considered. The Galerkin discretization of the governing equations is analyzed and the convergence of discrete solutions is...
5

THE ERROR ESTIMATION IN FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS WITH LOW REGULARITY

Jing Yang (8800844) 05 May 2020 (has links)
<div> <div> <div> <p>This dissertation contains two parts: one part is about the error estimate for the finite element approximation to elliptic PDEs with discontinuous Dirichlet boundary data, the other is about the error estimate of the DG method for elliptic equations with low regularity. </p> <p>Elliptic problems with low regularities arise in many applications, error estimate for sufficiently smooth solutions have been thoroughly studied but few results have been obtained for elliptic problems with low regularities. Part I provides an error estimate for finite element approximation to elliptic partial differential equations (PDEs) with discontinuous Dirichlet boundary data. Solutions of problems of this type are not in H1 and, hence, the standard variational formulation is not valid. To circumvent this difficulty, an error estimate of a finite element approximation in the W1,r(Ω) (0 < r < 2) norm is obtained through a regularization by constructing a continuous approximation of the Dirichlet boundary data. With discontinuous boundary data, the variational form is not valid since the solution for the general elliptic equations is not in H1. By using the W1,r (1 < r < 2) regularity and constructing continuous approximation to the boundary data, here we present error estimates for general elliptic equations. </p> <p>Part II presents a class of DG methods and proves the stability when the solution belong to H1+ε where ε < 1/2 could be very small. we derive a non-standard variational formulation for advection-diffusion-reaction problems. The formulation is defined in an appropriate function space that permits discontinuity across element </p> </div> </div> <div> <div> <p>viii </p> </div> </div> </div> <div> <div> <div> <p>interfaces and does not require piece wise Hs(Ω), s ≥ 3/2, smoothness. Hence, both continuous and discontinuous (including Crouzeix-Raviart) finite element spaces may be used and are conforming with respect to this variational formulation. Then it establishes the a priori error estimates of these methods when the underlying problem is not piece wise H3/2 regular. The constant in the estimate is independent of the parameters of the underlying problem. Error analysis presented here is new. The analysis makes use of the discrete coercivity of the bilinear form, an error equation, and an efficiency bound of the continuous finite element approximation obtained in the a posteriori error estimation. Finally a new DG method is introduced i to over- come the difficulty in convergence analysis in the standard DG methods and also proves the stability. </p> </div> </div> </div>
6

Discontinuous Galerkin Methods For Time-dependent Convection Dominated Optimal Control Problems

Akman, Tugba 01 July 2011 (has links) (PDF)
Distributed optimal control problems with transient convection dominated diffusion convection reaction equations are considered. The problem is discretized in space by using three types of discontinuous Galerkin (DG) method: symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty Galerkin (IIPG). For time discretization, Crank-Nicolson and backward Euler methods are used. The discretize-then-optimize approach is used to obtain the finite dimensional problem. For one-dimensional unconstrained problem, Newton-Conjugate Gradient method with Armijo line-search. For two-dimensional control constrained problem, active-set method is applied. A priori error estimates are derived for full discretized optimal control problem. Numerical results for one and two-dimensional distributed optimal control problems for diffusion convection equations with boundary layers confirm the predicted orders derived by a priori error estimates.
7

Some Domain Decomposition and Convex Optimization Algorithms with Applications to Inverse Problems

Chen, Jixin 15 June 2018 (has links)
Domain decomposition and convex optimization play fundamental roles in current computation and analysis in many areas of science and engineering. These methods have been well developed and studied in the past thirty years, but they still require further study and improving not only in mathematics but in actual engineering computation with exponential increase of computational complexity and scale. The main goal of this thesis is to develop some efficient and powerful algorithms based on domain decomposition method and convex optimization. The topicsstudied in this thesis mainly include two classes of convex optimization problems: optimal control problems governed by time-dependent partial differential equations and general structured convex optimization problems. These problems have acquired a wide range of applications in engineering and also demand a very high computational complexity. The main contributions are as follows: In Chapter 2, the relevance of an adequate inner loop starting point (as opposed to a sufficient inner loop stopping rule) is discussed in the context of a numerical optimization algorithm consisting of nested primal-dual proximal-gradient iterations. To study the optimal control problem, we obtain second order domain decomposition methods by combining Crank-Nicolson scheme with implicit Galerkin method in the sub-domains and explicit flux approximation along inner boundaries in Chapter 3. Parallelism can be easily achieved for these explicit/implicit methods. Time step constraints are proved to be less severe than that of fully explicit Galerkin finite element method. Based on the domain decomposition method in Chapter 3, we propose an iterative algorithm to solve an optimal control problem associated with the corresponding partial differential equation with pointwise constraint for the control variable in Chapter 4. In Chapter 5, overlapping domain decomposition methods are designed for the wave equation on account of prediction-correction" strategy. A family of unit decomposition functions allow reasonable residual distribution or corrections. No iteration is needed in each time step. This dissertation also covers convergence analysis from the point of view of mathematics for each algorithm we present. The main discretization strategy we adopt is finite element method. Moreover, numerical results are provided respectivelyto verify the theory in each chapter. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
8

Analysis of the quasicontinuum method and its application

Wang, Hao January 2013 (has links)
The present thesis is on the error estimates of different energy based quasicontinuum (QC) methods, which are a class of computational methods for the coupling of atomistic and continuum models for micro- or nano-scale materials. The thesis consists of two parts. The first part considers the a priori error estimates of three energy based QC methods. The second part deals with the a posteriori error estimates of a specific energy based QC method which was recently developed. In the first part, we develop a unified framework for the a priori error estimates and present a new and simpler proof based on negative-norm estimates, which essentially extends previous results. In the second part, we establish the a posteriori error estimates for the newly developed energy based QC method for an energy norm and for the total energy. The analysis is based on a posteriori residual and stability estimates. Adaptive mesh refinement algorithms based on these error estimators are formulated. In both parts, numerical experiments are presented to illustrate the results of our analysis and indicate the optimal convergence rates. The thesis is accompanied by a thorough introduction to the development of the QC methods and its numerical analysis, as well as an outlook of the future work in the conclusion.
9

Approximation par éléments finis conformes et non conformes enrichis / Approximation by enriched conforming and nonconforming finite elements

Zaim, Yassine 11 September 2017 (has links)
L’enrichissement des éléments finis standard est un outil performant pour améliorer la qualité d’approximation. L’idée principale de cette approche est d’ajouter aux fonctions de base un ensemble de fonctions censées améliorer la qualité des solutions approchées. Le choix de ces dernières est crucial et est en grande partie basé sur la connaissance a priori de quelques informations telles que les caractéristiques de la solution, de la géométrie du problème à résoudre, etc. L’efficacité de cette approche pour résoudre une équation aux dérivées partielles dans un maillage fixe, sans avoir recours au raffinement, a été prouvée dans de nombreuses applications dans la littérature. La clé de son succès repose principalement sur le bon choix des fonctions de base et plus particulièrement celui des fonctions d’enrichissement. Une question importante se pose alors : quelles conditions faut-il imposer sur les fonctions d’enrichissement afin qu’elles génèrent des éléments finis bien définis ?Dans cette thèse sont abordés différents aspects d’une approche générale d’enrichissement d’éléments finis. Notre première contribution porte principalement sur l’enrichissement de l’élément fini du type Q_1. Par contre, notre seconde contribution, certainement la plus importante, met l’accent sur une approche plus générale pour enrichir n’importe quel élément fini qu’il soit P_k, Q_k ou autres, conformes ou non conformes. Cette approche a conduit à l’obtention des versions enrichies de l’élément de Han, l’élément de Rannacher-Turek et l’élément de Wilson, qui font maintenant partie des codes d’éléments finis les plus couramment utilisés en milieu industriel. Pour établir ces extensions, nous avons eu recours à l’élaboration de nouvelles formules de quadrature multidimensionnelles appropriées généralisant les formules classiques bien connues en dimension 1, dites du “point milieu,” des “trapèzes” et de leurs versions perturbées, ainsi que la formule de Simpson. Elles peuvent être vues comme des extensions naturelles de ces formules en dimension supérieure. Ces dernières, en plus de leurs tests numériques implémentés sous MATLAB, version R2016a, ont fait l’objet de notre troisième contribution. Nous mettons particulièrement l’accent sur la détermination explicite des meilleures constantes possibles apparaissant dans les estimations d’erreur pour ces formules d’intégration. Enfin, dans la quatrième contribution nous testons notre approche pour résoudre numériquement le problème d’élasticité linéaire à l’aide d’un maillage rectangulaire. Nous effectuons l’analyse numérique aussi bien l’analyse de l’erreur d’approximation et résultats de convergence que l’analyse de l’erreur de consistance. Nous montrons également comment cette dernière peut être établie à n’importe quel ordre, généralisant ainsi certains travaux menés dans le domaine. Nous réalisons la mise en œuvre de la méthode et donnons quelques résultats numériques établis à l’aide de la bibliothèque libre d’éléments finis GetFEM++, version 5.0. Le but principal de cette partie sert aussi bien à la validation de nos résultats théoriques, qu’à montrer comment notre approche permet d’élargir la gamme de choix des fonctions d’enrichissement. En outre, elle permet de montrer comment cette large gamme de choix peut aider à avoir des solutions optimales et également à améliorer la validité et la qualité de l’espace d’approximation enrichie. / The enrichment of standard finite elements is a powerful tool to improve the quality of approximation. The main idea of this approach is to incorporate some additional functions on the set of basis functions. These latter are requested to improve the accuracy of the approximate solution. Their best choice is crucial and is based on the knowledge of some a priori information, such as the characteristics of the solution, the geometry of the problem to be solved, etc. The efficiency of such an approach for finding numerical solutions of partial differential equations using a fixed mesh, without recourse to refinement, was proved in numerous applications in the literature. However, the key to its success lies mainly on the best choice of the basis functions, and more particularly those of enrichment functions.An important question then arises: How to suitably choose them, in such a way that they generate a well-defined finite element ?In this thesis, we present a general approach that enables an enrichment of the finite element approximation. This was the subject of our first contribution, which was devoted to the enrichment of the classical Q_1 element, as a first step. As a second step, in our second contribution, we have developed a more general framework for enriching any finite element either P_k, Q_k or others, conforming or nonconforming. As an illustration of how to use this framework to build new enriched finite elements, we have introduced the extensions of some well-known nonconforming finite elements, notably, Han element, Rannacher-Turek element and Wilson element, which are now part of the main code of finite element methods. To establish these extensions, we have introduced a new family of multivariate versions of the classical trapezoidal, midpoint and Simpson rules. These latter, in addition to their numerical tests under MATLAB, version R2016a, have been the subject of our third contribution. They may be viewed as an extension of the well-known trapezoidal, midpoint and Simpson’s one-dimensional rules to higher dimensions. We particularly pay attention to the explicit expressions of the best possible constants appearing in the error estimates for these cubatute formulas. Finally, in the fourth contribution we apply our approach to numerically solving the linear elasticity problem based on a rectangular mesh. We carry out the numerical analysis of the approximation error and also for the consistency error, and show how the latter can be established to any order. This constitutes a generalization of some work already done in the field. In addition to our theoretical results, we have also made some numerical tests, which were achieved by using the GetFEM++ library, version 5.0. The aim of this contribution was not only to confirm our theoretical predictions, but also to show how the new developed framework allows us to expand the range of choices of enrichment functions. Furthermore, we have shown how this wide choices range can help us to improve some approximation properties and to get the optimal solutions for the particular problem of elasticity.
10

High-order in time discontinuous Galerkin finite element methods for linear wave equations

Al-Shanfari, Fatima January 2017 (has links)
In this thesis we analyse the high-order in time discontinuous Galerkin nite element method (DGFEM) for second-order in time linear abstract wave equations. Our abstract approximation analysis is a generalisation of the approach introduced by Claes Johnson (in Comput. Methods Appl. Mech. Engrg., 107:117-129, 1993), writing the second order problem as a system of fi rst order problems. We consider abstract spatial (time independent) operators, highorder in time basis functions when discretising in time; we also prove approximation results in case of linear constraints, e.g. non-homogeneous boundary data. We take the two steps approximation approach i.e. using high-order in time DGFEM; the discretisation approach in time introduced by D Schötzau (PhD thesis, Swiss Federal institute of technology, Zürich, 1999) to fi rst obtain the semidiscrete scheme and then conformal spatial discretisation to obtain the fully-discrete formulation. We have shown solvability, unconditional stability and conditional a priori error estimates within our abstract framework for the fully discretized problem. The skew-symmetric spatial forms arising in our abstract framework for the semi- and fully-discrete schemes do not full ll the underlying assumptions in D. Schötzau's work. But the semi-discrete and fully discrete forms satisfy an Inf-sup condition, essential for our proofs; in this sense our approach is also a generalisation of D. Schötzau's work. All estimates are given in a norm in space and time which is weaker than the Hilbert norm belonging to our abstract function spaces, a typical complication in evolution problems. To the best of the author's knowledge, with the approximation approach we used, these stability and a priori error estimates with their abstract structure have not been shown before for the abstract variational formulation used in this thesis. Finally we apply our abstract framework to the acoustic and an elasto-dynamic linear equations with non-homogeneous Dirichlet boundary data.

Page generated in 0.0438 seconds