171 |
A modular open-source pre-processing tool for finite element simulations of additive manufacturing processesFurr, William 13 December 2019 (has links)
Additive manufacturing has shown the ability to produce highly complex geometries that are not easily manufactured through traditional means. However, the implications of building these complex geometries regarding thermal history requires more attention. AM process simulations have proven to be computationally expensive and require large amounts of pre-processing to execute. This thesis will start with a review of additive manufacturing along with current modeling efforts. Then, the development of a pre-processing tool for finite element simulations of these processes is presented. It is shown that the pre-processing tool significantly decreases the total time-to-simulation by removing manual steps. Finally, a study using this tool is conducted to analyze the thermal histories of a cube and a cylinder with two different scan strategies and explore differences in resulting thermal history. It is shown that less temperature fluctuations and a lower final temperature result from an offset scan strategy and a cylindrical geometry.
|
172 |
Shear Lag Factor for Longitudinally Welded Tension Members using Finite Element MethodDhungana, Utsab 19 June 2014 (has links)
No description available.
|
173 |
The Self-Optimizing Inverse Methodology for Material Parameter Identification and Distributed Damage DetectionWeaver, Josh 29 May 2015 (has links)
No description available.
|
174 |
Critical Vertical Deflection of Buried HDPE PipesHan, Xiao 15 June 2017 (has links)
No description available.
|
175 |
Study of Forming of Composite Materials with Abaqus CAE and The Preferred Fiber Orientation (PFO) ModelLi, Yumeng January 2017 (has links)
No description available.
|
176 |
FINITE DEFORMATION BIPHASIC MATERIAL CHARACTERIZATION AND MODELING OF AGAROSE GEL FOR FUNCTIONAL TISSUE ENGINEERING APPLICATIONSMURALIDHARAN, PRASANNA 20 July 2006 (has links)
No description available.
|
177 |
Analysis of Bolted Top and Seat Angle Connection Failure Modes & Fracture PredictionHahnel, Christopher January 2015 (has links)
No description available.
|
178 |
Verification and Calibration of State-of-the-Art CMC Mechanistic Damage ModelNowacki, Brenna M. 23 May 2016 (has links)
No description available.
|
179 |
Patch loading resistance of welded I-beams : with respect to misaligned web stiffenersBoutzas, John-Alexander, Zeka, Dafina January 2016 (has links)
When a concentrated load is introduced perpendicular to the flanges of a steel beam, this condition is referred to as Patch loading (Gozzi, 2007). This occurrence is common in many steel structures, for example at supports or during launching of bridges. Because of the usual slenderness of I-beams and other plated structures, these are sometimes reinforced with stiffeners in order to avoid buckling. Modifications, such as adding stiffeners to a beam, are done to make greater plastic deformations possible before buckling can occur; thereby increasing the resistance against failure. Transverse stiffeners are added in areas where the beam is exposed to concentrated loads (Lagerqvist, 1994). The descriptions of calculating patch loading in the Eurocode are presented for cases of double stiffeners, with the load applied in between two stiffeners with same distance to each of them, or when there is one single stiffener that is acting in line with the load. In the Eurocode there are also descriptions on how to calculate on the resistance against patch loading when there are no stiffeners added. However, the Eurocode lacks descriptions for cases when the stiffeners are misaligned. The purpose of this paper is the evaluation of the impact from transverse stiffeners to the resistance of welded I-beams, when the stiffeners are misaligned and where the length of the beam varies. Because of the complexity of such of problems it is almost impossible to find theoretical solutions (Lagerqvist & Johansson, 1996). Therefore, in this study as well as in almost all studies that aim to predict the ultimate resistances of steel beams subjected to patch loading, the results are gained empirically. The tests herein were done by FE-modeling and the results from the physical experiments done in Lagerkvist’s doctoral thesis were used for validation of the model, as conducting experiments ourselves was not economically possible. 6 The study was made in two steps. In the first step FE-models were produced under the same circumstances as the results obtained by Lagerqvist (1994). Those analyses were not part of the aim of the study; the intention for making the initial analyses was to strengthen the reliability of the results. From there, the final analyses were made with the aim in investigating the influence of stiffeners on the resistance, when these are misaligned. In this step, observations were also made with regards to the impact of the bending moment of the beam on its resistance. The initial analyses, which were made for validation of the modeling, had a satisfying correspondence to the physical experiments; hence the final analyses are assumed valid of acceptance. From observations of the results in the final analyses it is noticed that adding stiffeners is a highly preferred way of increasing the resistance for slender beams. For full utilization it is however important to have the stiffeners optimally placed, because a small deviation from this position gives an unwanted decrease in resistance.
|
180 |
Deformations of In-plane Loaded Unsymmetrically Laminated Composite PlatesMajeed, Majed A. 03 March 2005 (has links)
This study focuses on the response of flat unsymmetric laminates to an inplane compressive loading that for symmetric laminates are of sufficient magnitude to cause bifurcation buckling, postbuckling, and secondary buckling behavior. In particular, the purpose of this study is to investigate whether or not the concept of bifurcation buckling is applicable to unsymmetric laminates. Past work by other researchers has suggested that such a concept is applicable for certain boundary conditions. The study also has as an objective the determination of the response of flat unsymmetric laminates if bifurcation buckling does not occur. The finite-element program ABAQUS is used to obtain results, and a portion of the study is devoted to becoming familiar with the way ABAQUS handles such highly geometrically nonlinear problems, particularly for composite materials and particularly when instabilities and dynamic behavior are involved. Familiarity with the problem, in general, and with the use of ABAQUS, in particular, is partially gained by considering semi-infinite unsymmetrically laminated cross- and angle-ply plates, a one-dimensional problem that can be solve in closed form and with ABAQUS by making the appropriate approximations for the infinite geometry. In this portion of the study it is found that semi-infinite cross-ply laminates with clamped boundary conditions and semi-infinite angle-ply plates with simple-support boundary conditions remain flat under a compressive load until the load magnitude reaches a certain level, at which time the out-of-plane deflection become indeterminate, essentially an eigenvalue problem as encountered with classic bifurcation buckling analyses. Obviously, a linear analysis of such problems would not reveal this behavior and, in fact, there are other revealed significant differences between the predictions of linear and nonlinear analyses. Transversely-loaded and inplane-loaded finite isotropic plates are studied by way of semi-closed form Rayleigh-Ritz-based solutions and ABAQUS in a step to approaching the problem with unsymmetric laminates. A method to investigate the unloading behavior of postbuckled finite isotropic plates is developed that reveal multiple plate configurations in the postbuckled region of the response, and this method is then extended to the study of finite inplane-loaded unsymmetric laminates. To that end, two specific laminates, a symmetric and an unsymmetric cross-ply laminates, and a variety of boundary conditions are used to study the response of inplane-loaded unsymmetric laminates. The symmetric laminate is included to provide a familiar baseline case and a means of comparison. Plates with all four edges clamped and a variety of inplane boundary conditions are studied. Of course the symmetric cross-ply laminate exhibits bifurcation behavior, and when the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are restrained, secondary buckling behavior occurs. For the unsymmetric cross-ply laminate, bifurcation buckling behavior does not occur unless the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are restrained, or the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are free. If either of these conditions are not satisfied, the unsymmetric cross-ply laminate exhibits what could be termed 'near-bifurcation' behavior. In all cases rather complex behavior occurs for high levels of inplane load, including asymmetric postbuckling and secondary buckling behavior. For clamped loaded edges and simply-supported unloaded edges, bifurcation buckling behavior does not occur unless the tangential displacement on the loaded edges and the normal displacement on the unloaded edges are restrained. For this case, rather unusual asymmetric bifurcation and associated limit point behavior occur, as well as secondary buckling. This is a very interesting boundary condition case and is studied further for other unsymmetric cross-ply laminates, including the use of a Rayleigh-Ritz-based solution in attempt to quantify the problem parameters responsible for the asymmetric response. The overall results of the study have led to an increased understanding of the role of laminate asymmetry and boundary conditions on the potential for bifurcation behavior, on the response of the laminate for loads beyond that level. / Ph. D.
|
Page generated in 0.0169 seconds