• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 464
  • 87
  • 74
  • 64
  • 48
  • 39
  • 16
  • 10
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 995
  • 130
  • 84
  • 79
  • 76
  • 71
  • 66
  • 65
  • 63
  • 62
  • 59
  • 58
  • 54
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Observations of supernova remnants at very high energies with VERITAS

Wilcox, Patrick Dean 01 August 2019 (has links)
The constant flux of cosmic rays that bombard Earth from within our own galaxy are understood to come from both shell-type supernova remnants and pulsar wind nebulae (PWNe). Multiwavelength study of these objects can help us to understand what types of particles are accelerated, and gamma-ray emission is key to understanding the highest energy cosmic rays. In this thesis, I analyze and interpret observations made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS), a gamma-ray telescope located in Southern Arizona. LS 5039 and HESS J1825-137 occupy the same field of view on the sky and were observed for about 8 hours with VERITAS. LS 5039 is a gamma-ray binary, and the observations supports theories that the compact object hosts a PWN which is continuously interacting with the nearby star. HESS J1825-137 is a very extended PWN with an extent of diameter greater than 1 degree on the sky. Using the VERITAS observations, I am able to measure the radial profile and compare the gamma-ray luminosity to other PWN. DA 495, a "Crab-like" PWN with unusually strong magnetic fields, was observed for about 70 hours with VERITAS. In this study, results are combined with radio and X-ray spectral information to allow for detailed astrophysical modeling of the region. This broadband spectral modeling places constraints on the properties of the particle population in this PWN and allows for both leptonic and hadronic emission scenarios to be evaluated. Hadronic scenarios instil doubt on the pure PWN interpretation and favor a previously undetected shell-type remnant being present.
302

The Reliability of Accelerometry to Measure Weightlifting Performance

Sato, Kimitake, Sands, William A., Stone, Michael H. 01 November 2012 (has links)
The purposes of the study were to track weightlifters' barbell acceleration with a portable accelerometer over three training sessions to examine test–retest reliability and to compare peak barbell acceleration at different training intensities. Twelve nationally ranked weightlifters volunteered for this study. The portable accelerometer was attached to the right side of the barbell to measure barbell resultant acceleration during the snatch lift at a sampling frequency of 100 Hz. The data were collected over three training sessions at intensity levels of 80%, 85%, and 90% of one repetition maximum. The data were analyzed using intra-class correlation coefficients (ICCs) for the three training sessions and one-way repeated measure ANOVA to compare the difference in peak barbell acceleration at three intensities. Results showed that the device was highly reliable with an ICC of 0.88 and 95% confidence interval of 0.81–0.93. There were significant differences in peak barbell acceleration at various lifting intensities, indicating a decline of the acceleration as the mass of the barbell became heavier. The portable accelerometer seems useful in measuring barbell acceleration data, which can be analyzed in future studies to monitor a weightlifter's performance in a practical setting instead of testing at a laboratory.
303

Analysis of entry phase in intermittent machining

Agic, Adnan January 2018 (has links)
Cutting forces and vibrations are essential parameters in the assessment of a cutting process. As the energy consumption in the machining process is directly affected by the magnitude of the cutting forces it is of vital importance to design cutting edges and select process conditions that will maintain high tool performance through reduced energy consumption. The vibrations are often the cause of poor results in terms of accuracy, low reliability due to sudden failures and bad environmental conditions caused by noise. The goal of this work is to find out how the cutting edge and cutting conditions affect the entry conditions of the machining operation. This is done utilizing experimental methods and appropriate theoretical approaches applied to the cutting forces and vibrations. The research was carried out through three main studies beginning with a force build-up analysis of the cutting edge entry into the workpiece in intermittent turning. This was followed by a second study, concentrated on modelling of the entry phase which has been explored through experiments and theory developed in the first study. The third part was focused on the influence of the radial depth of cut upon the entry of cutting edge into the workpiece in a face milling application. The methodology for the identification of unfavourable cutting conditions is also explained herein. Important insights into the force build-up process help addressing the correlation between the cutting geometries and the rise time of the cutting force. The influence of the nose radius for a given cutting tool and workpiece configuration during the initial entry is revealed. The critical angle i.e. the position of the face milling cutter that results in unfavourable entry conditions has been explained emphasizing the importance of the selection of cutting conditions. Finally, the theoretical methods utilized for the evaluation of the role of cutting edge geometry within entry phase dynamics has been explored. This has revealed the trends that are of interest for selection of cutting conditions and cutting edge design.
304

Trend and Acceleration: A Multi-model Approach to Key West Sea Level Rise

Tenenholtz, John 14 November 2017 (has links)
Sea level rise (SLR) varies depending on location. It is therefore important to local residents, businesses and government to analyze SLR locally. Further, because of increasing ice melt and other effects of climate change, rates of SLR may change. It is therefore also important to evaluate rates of change of SLR, which we call sea level acceleration (SLA) or deceleration. The present thesis will review the annual average sea level data compiled at the Key West tidal gauge in Key West, Florida. We use a multi-model approach that compares the results of various models on that data set. The goal is to determine if there is a consistent result that can be ascertained from the various models. Generally, all the models reveal a clear upward trend of SLR. Further, the models provide evidence that the trend has increased over the last 8-10 years, i.e., that there is SLA.
305

Novel adaptive reconstruction schemes for accelerated myocardial perfusion magnetic resonance imaging

Lingala, Sajan Goud 01 December 2013 (has links)
Coronary artery disease (CAD) is one of the leading causes of death in the world. In the United States alone, it is estimated that approximately every 25 seconds, a new CAD event will occur, and approximately every minute, someone will die of one. The detection of CAD during in its early stages is very critical to reduce the mortality rates. Magnetic resonance imaging of myocardial perfusion (MR-MPI) has been receiving significant attention over the last decade due to its ability to provide a unique view of the microcirculation blood flow in the myocardial tissue through the coronary vascular network. The ability of MR-MPI to detect changes in microcirculation during early stages of ischemic events makes it a useful tool in identifying myocardial tissues that are alive but at the risk of dying. However this technique is not yet fully established clinically due to fundamental limitations imposed by the MRI device physics. The limitations of current MRI schemes often make it challenging to simultaneously achieve high spatio-temporal resolution, sufficient spatial coverage, and good image quality in myocardial perfusion MRI. Furthermore, the acquisitions are typically set up to acquire images during breath holding. This often results in motion artifacts due to improper breath hold patterns. This dissertation deals with developing novel image reconstruction methods in conjunction with non-Cartesian sampling for the reconstruction of dynamic MRI data from highly accelerated / under-sampled Fourier measurements. The reconstruction methods are based on adaptive signal models to represent the dynamic data using few model coefficients. Three novel adaptive reconstruction methods are developed and validated: (a) low rank and sparsity based modeling, (b) blind compressed sensing, and (c) motion compensated compressed sensing. The developed methods are applicable to a wide range of dynamic imaging problems. In the context of MR-MPI, this dissertation show feasibilities that the developed methods can enable free breathing myocardial perfusion MRI acquisitions with high spatio-temporal resolutions ( < 2mm x 2mm, 1 heart beat) and slice coverage (upto 8 slices).
306

VERITAS observations of galactic gamma-ray sources

Tsurusaki, Kazuma 01 July 2012 (has links)
The main topic of this thesis is analysis of an unidentified Galactic TeV gamma-ray source, MGRO J1908+06, discovered by Milagro instrument in 2007. We analyzed 54 hours of observational data from the Very Energetic Radiation Imaging Telescope Array System (VERITAS), a ground-based gamma-ray observatory in southern Arizona comprised of an array of four Cherenkov Telescopes that reconstructs the energy and direction of astrophysical gamma-rays by imaging Cherenkov light emitted by energetic particles in air showers produced by the primary gamma-rays. MGRO J1908+06 is located between a supernova remnant SNR G40.5-0.5 and a young, energetic pulsar PSR J1907+0602. We studied the energy dependent morphology of the TeV emission from the source and measured the source extent and spectrum. The source extends well past the boundary of the SNR and is not correlated with strong radio continuum or molecular line emission which likely excludes an origin for the emission as solely due to the SNR. While emission in the 0.5-1.25 TeV band was centered around the pulsar, higher energy emission was observed near the supernova remnant. This morphology is opposite that observed in other pulsar wind nebulae. We proposed two models for the high energy emission located well away from the pulsar but close to the SNR: (1) shock acceleration at the shock front created by an interaction between the pulsar wind and the dense gas at the edge of the SNR or (2) molecular clouds around the SNR provides seed photons with energies higher than those from Cosmic Microwave Backgrounds for inverse Compton scattering. The former model can be tested by looking for molecular emission lines that trace shocks and by measuring the pulsar velocity. In addition, we investigated the gamma-ray emission from the nova explosion of V407 Cygni that occurred in March 2010. The Fermi-LAT observed this event in the energy range of E >100 MeV. The origins of the gamma-ray emission that the Fermi-LAT team proposed are either protons (hadronic model) or electrons (leptonic model), both of which were accelerated at the nova shock via the Fermi acceleration mechanism. We did not consider their leptonic model because no TeV gamma-ray emission is predicted. Their hadronic model can generate TeV gamma-rays with the modeled parameters. We found no evidence for TeV emission. We showed that with the flux upper limit calculated using the VERITAS data imposes constraints on the extension of the proton spectrum at high energies.
307

Exploring the Alfvén-wave acceleration of auroral electrons in the laboratory

Schroeder, James William Ryan 01 August 2017 (has links)
Inertial Alfvén waves occur in plasmas where the Alfvén speed is greater than the electron thermal speed and the scale of wave field structure across the background magnetic field is comparable to the electron skin depth. Such waves have an electric field aligned with the background magnetic field that can accelerate electrons. It is likely that electrons are accelerated by inertial Alfvén waves in the auroral magnetosphere and contribute to the generation of auroras. While rocket and satellite measurements show a high level of coincidence between inertial Alfvén waves and auroral activity, definitive measurements of electrons being accelerated by inertial Alfvén waves are lacking. Continued uncertainty stems from the difficulty of making a conclusive interpretation of measurements from spacecraft flying through a complex and transient process. A laboratory experiment can avoid some of the ambiguity contained in spacecraft measurements. Experiments have been performed in the Large Plasma Device (LAPD) at UCLA. Inertial Alfvén waves were produced while simultaneously measuring the suprathermal tails of the electron distribution function. Measurements of the distribution function use resonant absorption of whistler mode waves. During a burst of inertial Alfvén waves, the measured portion of the distribution function oscillates at the Alfvén wave frequency. The phase space response of the electrons is well-described by a linear solution to the Boltzmann equation. Experiments have been repeated using electrostatic and inductive Alfvén wave antennas. The oscillation of the distribution function is described by a purely Alfvénic model when the Alfvén wave is produced by the inductive antenna. However, when the electrostatic antenna is used, measured oscillations of the distribution function are described by a model combining Alfvénic and non-Alfvénic effects. Indications of a nonlinear interaction between electrons and inertial Alfvén waves are present in recent data.
308

Concurrent validity and reliability of a time of-flight camera on measuring muscle’s mechanical properties during sprint running

Stattin, Sebastian January 2019 (has links)
Recent advancements in 3D data gathering have made it possible to measure the distance to an object at different time stamps through the use of time-of-flight cameras. Therefore, the purpose of this study was to investigate the validity and reliability of a time-of-flight camera on different mechanical sprint properties of the muscle. Fifteen male football players performed four 30m maximal sprint bouts which was simultaneously recorded with a time-of-flight camera and 1080 sprint device. By using an exponential function on the collected positional- and velocity-time data from both the devices, following variables were derived and analyzed: Maximal velocity (nmax), time constant (t), theoretical maximal force (F0), theoretical maximal velocity (V0), peak power output (Pmax), F-V mechanical profile (Sfv) and decrease in ratio of force (Drf). The results showed strong correlation in vmax along with a fairly small standard error of estimate (SEE) (r = 0,817, SEE = 0,27 m/s), while t displayed moderate correlation and relatively high SEE (r = 0,620, SEE = 0,12 s). Furthermore, moderate mean bias (&gt;5%) were revealed for most of the variables, except for vmax and V0. The within-sessions reliability using Intraclass correlation coefficient (ICC) and standard error of measurement (SEM) ranged from excellent to poor with Pmax displaying excellent reliability (ICC = 0,91, SEM = 72W), while vmax demonstrated moderate reliability (ICC = 0,61, SEM = 0,26 m/s) and t poor(ICC = 0,44, SEM = 0,11 s). In conclusion, these findings showed that in its current state, the time-of-flight camera is not a reliable or valid device in estimating different mechanical properties of the muscle during sprint running using Samozino et al’s computations. Further development is needed.
309

Precise Velocity and Acceleration Determination Using a Standalone GPS Receiver in Real Time

Zhang, Jianjun, j3029709.zhang@gmail.com January 2006 (has links)
Precise velocity and acceleration information is required for many real time applications. A standalone GPS receiver can be used to derive such information; however, there are many unsolved problems in this regard. This thesis establishes the theoretical basis for precise velocity and acceleration determination using a standalone GPS receiver in real time. An intensive investigation has been conducted into the Doppler effect in GPS. A highly accurate Doppler shift one-way observation equation is developed based on a comprehensive error analysis of each contributing factor including relativistic effects. Various error mitigation/elimination methods have been developed to improve the measurement accuracy of both the Doppler and Doppler-rate. Algorithms and formulae are presented to obtain real-time satellite velocity and acceleration in the ECEF system from the broadcast ephemeris. Low order IIR differentiators are designed to derive Doppler and Doppler-rate measurements from the raw GPS data for real-time applications. Abnormalities and their corresponding treatments in real-time operations are also discussed. In addition to the velocity and acceleration determination, this thesis offers a good tool for GPS measurement modelling and for design of interpolators, differentiators, as well as Kalman filters. The relativistic terms presented by this thesis suggest that it is possible to measure the geopotential directly using Doppler shift measurements. This may lead to a foundation for the development of a next generation satellite system for geodesy in the future.
310

On the afterglow of Gamma-Ray Bursts within the EMBH model

Fraschetti, Federico 04 November 2004 (has links) (PDF)
The main results of this work are the contribution to find the following results: <br />• The most general GRB is made by an early emission (P-GRB or Proper-GRB), with a time-scale not larger than 1 or 2 seconds and an afterglow, whose light curve is characterized by an increasing phase followed by a peak and a decreasing phase. This peak has been identified with the long GRBs prompt emission. In this scenario short GRBs are not but P-GRB, while long GRBs present both a peak and a decreasing late time emission, which is the observed afterglow.<br />• A possible GRB/SuperNova connection is based on the process of induced gravitational collapse of a companion star of the black hole originating the GRB. <br />• A thermal distribution in the comoving frame of the expanding system is assumed for X and γ bands of the spectrum. This assumption leads to a natural bending of the late time light curves making not necessary the hypothesis of a beamed emission within a collimated jet from the inner engine, which has been introduced in literature essentially to reduce the energy requirements.

Page generated in 0.0835 seconds