931 |
Cellular targets of Pseudomonas aeruginosa toxin Exoenzyme SHenriksson, Maria January 2003 (has links)
Pseudomonas aeruginosa is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. It uses a type III secretion dependent mechanism to translocate toxic effector proteins directly into the eukaryotic cell. The enzymatic activity of two of these toxins, Exoenzyme S (ExoS) and Exoenzyme T (ExoT), have been studied in this thesis. ExoS is a bi-functional toxin known to contain a C-terminal ADP-ribosyltransferase activity, which has been shown to modify members of the Ras family in vitro. The N-terminal of ExoS contains a GTPase Activating Protein (GAP) domain, which shows specificity towards Rho proteins in vitro. ExoT shows high homology (76%) towards ExoS and has also been reported to contain ADP-ribosyltransferase activity in vitro. To study the biological effect of the two toxins, we inserted ExoS or ExoT into eukaryotic cells using the heterologous type III secretion system of Yersinia pseudotuberculosis. We found that Ras was ADP-ribosylated in vivo and this modification altered the ratio of GTP/GDP bound directly to Ras. We also found that ExoS could ADP-ribosylate several members of the Ras superfamily in vivo, modulating the activity of those proteins. In contrast, ExoT showed no ADP-ribosylation activity towards any of the GTPases tested. This suggests that ExoS is the major ADP-ribosyltransferase modulating small GTPase function encoded by P. aeruginosa. Furthermore, we have demonstrated that the GAP activity of ExoS abolishes the activation of RhoA, Cdc42 and Rap1 in vivo, and that ExoT shows GAP activity towards RhoA in vitro. The ADP-ribosyltransferase activity of ExoS is dependent on the eukaryotic protein 14-3-3. 14-3-3 proteins interact with ExoS in a phospho-independent manner. We identified the amino acids 424DALDL428 on ExoS to be necessary for the specific interaction between ExoS and 14-3-3. Deletion of these five amino acids abolishes the ADP-ribosylation of Ras and hence the cytotoxic effect of P. aeruginosa on cells. Thus the 14-3-3 binding motif on ExoS appears to be critical for both the ADP-ribosylation activity and the cytotoxic action of ExoS in vivo.
|
932 |
Avian IgY antibody : In vitro and in vivoCarlander, David January 2002 (has links)
Immunoglobulin Y (IgY) is the major antibody found in eggs from chicken (Gallus domesticus). IgY can be used as an alternative to mammalian antibodies normally used in research, and its use in immunotherapy has recently been proposed. Compared to mammalian antibodies, IgY possesses several biochemical advantages and its simple purification from egg yolk prevents a stressful moment in animal handling, as no bleeding is necessary. Small amount of antigen (1 mg) can be used to elicit an immune response in chickens and there are low intra-individual differences regarding antibody concentration found in yolk. By studying two chicken breeds and their cross, a genetic correlation was shown regarding the IgY concentration, which implies a possibility by breeding to increase IgY concentrations. By using IgY instead of goat antibody as capture antibody in ELISA, it is possible reduce interferences by complement activation. After oral administration of IgY to healthy volunteers, IgY activity was present in saliva 8 hours later, indicating a protective effect. This effect has been studied in an open clinical trial with cystic fibrosis patients. Specific IgY against Pseudomonas aeruginosa given orally prolongs the time of intermittent colonization by six months, decrease the number of positive colonizations and might be a useful complement to antibiotic treatment. Immunoglobulin therapy may diminish the development of antibiotic resistant microorganisms. The use of immunoglobulin therapy broadens the arsenal available to combat pathogens in medicine and IgY is a promising candidate, both as an alternative to antibiotics and as a useful tool in research and diagnostics.
|
933 |
Type III secretion- the various functions of the translocon operon in bacterial pathogenesisBröms, Jeanette January 2004 (has links)
In order to establish colonisation of a human host, pathogenic Yersinia use a type III protein secretion system to directly intoxicate host immune cells. Activation of this system requires target cell contact and is a highly regulated process. Both the intoxication and regulation events depend on the lcrGVHyopBD translocon operon, which is highly conserved in many bacterial pathogens. In this study, the role of individual operon members was analysed and functional domains identified by using the highly homologous pcrGVHpopBD operon of P. aeruginosa as a comparative tool. Yersinia spp. and P. aeruginosa were shown to form translocation pores of a similar size that promoted equally efficient protein delivery. A strong dependency on interactions between native translocator(s) in protein delivery was revealed, suggesting that each pathogen has delicately fine-tuned this process to suit its own infection niche. In particular, the C-terminus of YopD was shown to possess functional specificity for effector delivery in Yersinia that could not be conferred by the comparable region in homologous PopD. Moreover, a role for LcrV and PcrV in substrate recognition during the protein delivery process was excluded. The N-terminus of LcrH was recognized as a unique regulatory domain, mediating formation of LcrH-YscY regulatory complexes in Yersinia, while equivalent complexes with analogous proteins were not formed in P. aeruginosa. These results compliment the idea that a negative regulatory pathway involving LcrH, YopD, LcrQ and YscY is unique to Yersinia. Finally, PcrH was identified as a new member of the translocator class of chaperones, being essential for assembly of a functional PopB/PopD mediated translocon in P. aeruginosa. However, in contrast to the other members of this family, PcrH was dispensable for type III regulation. Moreover, both LcrH and PcrH were shown to possess tetratricopeptide repeats crucial for their chaperone function. One tetratricopeptide repeat mutant in LcrH was even isolated that failed to secrete both YopB and YopD substrates, even though stability was maintained. This demonstrates for the first time that LcrH has a role in substrate secretion in addition to its critical role in promoting substrate stability.
|
934 |
Studies on Airway Surface Liquid in Connection with Cystic FibrosisKozlova, Inna January 2008 (has links)
Cystic fibrosis (CF) is one of the most common fatal inherited diseases, most prevalent among Caucasians. CF is caused by a mutation in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), which helps to create sweat, digestive juices, and airway surface liquid (ASL). The airways are covered with a thin layer of fluid, the airway surface liquid, in which the cilia bathe. Defective or absent CFTR leads to a defective water and ion transport in the epithelial cells, which results in viscous mucus, defective ciliary clearance, bacterial inflammation and tissue damage. The volume and composition of ASL are important in the pathogenesis of cystic fibrosis and it is therefore relevant to determine its composition. However, there are a number of difficulties in determining the ionic composition of the ASL due to its small volume. Literature data vary from very hypotonic to markedly hypertonic. These controversial data inspired the development of a simple method for determining the elemental composition of the ASL in different animal species and humans. Two techniques were developed to determine the composition of ASL, from which indirect information on chloride transport in airway epithelium can be obtained. In the first method, tissue is removed from the animals under anesthesia, frozen and analyzed in the frozen-hydrated state. In the second method, the ASL is collected with small dextran (Sephadex) beads; the dried beads are then analyzed by X-ray microanalysis. The Sephadex-bead method appears more accurate compared to the frozen-hydrated samples. Both methods were applied to collect tracheal and/or nasal fluid in pigs, normal and transgenic cystic fibrosis mice, the fluid covering the apical surface of normal bronchial cells (16HBE14o-) and a cystic fibrosis human bronchial cell line (CFBE41o-), and finally nasal fluid in healthy and diseased subjects. The ionic composition of the ASL was isotonic both in pigs and healthy human subjects. CF patients had much higher levels of Na and Cl ions than healthy subjects. The ASL under control conditions was hypotonic in mice and cell cultures, whereas the concentrations of Na and Cl ions in the species with the ΔF508 mutation or absent CFTR were significantly higher than in the corresponding controls. It was also demonstrated that the ionic composition of the ASL can be influenced by pharmacological treatment. The study confirms earlier findings that CFTR also is involved in bicarbonate transport. Mist tent therapy has been tested in the study of a treatment for CF patients, in order to hydrate the viscous mucus. But the effect of mist tent therapy on ion concentrations in the ASL appeared to be short-lived, although no patients became chronically colonized with pseudomonads while on nocturnal mist tent therapy.
|
935 |
Surveillance of Antibiotic Consumption and Antibiotic Resistance in Swedish Intensive Care UnitsErlandsson, Marcus January 2007 (has links)
Introduction: Nosocomial infections remain a major cause of mortality and morbidity. The problem is most apparent in intensive care units (ICUs). Most ICU patients are compromised and vulnerable as a result of disease or severe trauma. One in ten people admitted to hospital is given an antibiotic for infection. The risk of acquiring a nosocomial infection in a European ICU is approximately 20%. It is vitally important that ways are found to prevent transmission between patients and personnel, and that local hygiene routines and antibiotic policies are developed. This thesis is a holistic work focused particularly on antimicrobial antibiotic resistance, antibiotic consumption and to some extent on hygiene in Swedish ICUs. Aims: The general aim of this thesis was to investigate bacterial resistance and antibiotic consumption in Swedish ICUs and to try to correlate ICU demographic data with antibiotic consumption and antibiotic resistance. Additional aims were to investigate on which clinical indications antibacterial drugs are prescribed in the ICU, and to investigate the emergence of resistance and transmission of Pseudomonas aeruginosa in the ICU using cluster analysis based on antibiograms and genotype data obtained by AFLP. Material and methods: In paper 1-3, antibiotic consumption data together with bacterial antibiotic resistance data and specific ICU-demographic data were collected from an increasing number of ICUs over the years 1997-2001. Data from ICUs covering up to six million out of Sweden’s nine million inhabitants were included. In paper 4, the indications for antibiotic prescribing were studied during two weeks in 2000. Paper 5 investigated Pseudomonas aeruginosa isolates in order to detect cross-transmission with genotype obtained by AFLP, and antibiogram-based cluster analysis was also performed in order to see if this could be a quicker and easier substitute for AFLP. Results: This thesis has produced three important findings. Firstly, antibiotic consumption in participating ICUs was relatively high during the study period, and every patient received on average more than one antimicrobial drug per day (I-IV). Secondly, levels of antimicrobial drug resistance seen in S. aureus, E. coli and Klebsiella spp remained low when data were pooled from all ICUs throughout the study period, despite relatively high antibiotic consumption (I-V). Thirdly, the prevalence of antibiotic resistance in CoNS and E. faecium, cefotaxime resistance in Enterobacter, and ciprofloxacin and imipenem resistance in P. aeruginosa was high enough to cause concern. Conclusion: For the period studied, multidrug resistance in Swedish ICUs was not a major problem. Signs of cross-transmission with non-multiresistant bacteria were observed, indicating a hygiene problem and identifying simple improvements that could be made in patient care guidelines and barrier precautions. A need for better follow up of prescribed antibiotics was evident. With further surveillance studies and monitoring of antibiotics and bacterial resistance patterns in the local setting as well as on a national and international level, some of the strategic goals in the prevention and control of the emergence of antimicrobial-resistant microbes may be achievable.
|
936 |
Small Molecules as Tools in Biological Chemistry : Effects of Synthetic and Natural Products on the Type III Secretion SystemZetterström, Caroline E. January 2013 (has links)
The increasing use of antibiotics has led to a huge problem for society, as some bacteria have developed resistance towards many of the antibiotics currently available. To help find solutions to this problem we studied small molecules that inhibit bacterial virulence, the ability to cause disease. The type III secretion system (T3SS) is a conserved virulence system found in several gram-negative bacteria, including human and plants pathogens, such as Yersinia spp., Pseudomonas aeruginosa, Chlamydia spp., Salmonella spp., Shigella spp, enteropathogenic Escherichia coli (EPEC), enterohemorrhagic Escherichia coli (EHEC), and Erwinia spp. One class of virulence-blocking compounds is the salicylidene acylhydrazides. They were first identified in a screen towards the T3SS in Yersinia pseudotuberculosis and have since been shown to block the T3SS in a panel of gram-negative bacteria such as Chlamydia spp. Salmonella enterica, Shigella flexneri and EPEC. We designed and synthesized a library of 58 salicylidene acylhydrazides and evaluated their activity as virulence-blocking compounds in Y. pseudotuberculosis followed by calculations of quantitative structure activity relationships (QSARs). Four QSAR models were calculated, and when used in consensus they correctly classified between five out of eight compounds for Y. pseudotuberculosis as active or inactive and six out of eight compounds for C. trachomatis. Since the target and mode of action of the salicylidene acylhydrazides were unknown, we used solution and solid phase synthesis to synthesize three different affinity reagents. One of these affinity reagents was used in affinity chromatography experiments, where 19 putative target proteins from an E. coli O157 bacterial lysate were identified. We studied four of the proteins, Tpx, WrbA, FolX, and AdhE, in more detail in Y. pseudotuberculosis and E. coli O157. We believe that the salicylidene acylhydrazides act on multiple targets that together result in down-regulation of T3SS functions. A knockout of AdhE in E. coli O157 showed a similar phenotype as salicylidene acylhydrazide treated E. coli, suggesting that this protein may be particularly interesting as a drug target. Many of the antibiotics used today originate form natural sources. In contrast, most virulence-blocking compounds towards the T3SS are small synthetic organic molecules. Therefore, a prefractionated natural product library with marine and terrestrial biota samples was screened towards the T3SS in Y. pseudotuberculosis. Neohopeaphenol A was identified as a hit and shown to have micromolar activity towards Y. pseudotuberculosis and P. aeruginosa in cell-based infection models. / Det ökande användandet av antibiotika har lett till stora problem för samhället. Många bakterier har utvecklat resistens mot de antibiotika som finns tillgängliga. För att försöka hitta en möjlig lösning på detta problem, arbetar vi med en strategi där vi med hjälp av små organiska molekyler inhiberar bakteriernas virulenssystem, deras förmåga att orsaka sjukdom. Traditionella antibiotika är antingen, bakteriocida, avdödande eller bakteriostatiska, tillväxthämmande. Bakteriernas enda sätt för att överleva antibiotikabehandlingen är att utveckla resistens. Forskarvärlden tror att molekyler som inhiberar bakteriernas virulenssystem, leder till ett minskat tryck att utveckla resistens mot dessa molekyler, eftersom de inte dödar eller hämmar bakterietillväxten, utan bara avväpnar bakterierna. Typ III sekretionssystemet är ett virulenssystem som finns i många gram-negativa bakterier, t.ex., Yersinia spp., Pseudomonas aeruginosa, Chlamydia spp., Salmonella spp., Shigella spp, enteropatogena Escherichia coli (EPEC) och Erwinia spp. Salicylidenacylhydraziderna är en substansklass virulensblockare som inhiberar typ III sekretionssystemet i de ovan nämnda bakterierna. I denna avhandling har vi designat och syntetiserat ett bibliotek med 58 salicylidenacylhydrazider och utvärderat deras biologiska aktivitet som virulensblockare i Y. pseudotuberculosis. Vi relaterade den biologiska aktiviteten till de kemiska egenskaperna hos salicylidenacylhydraziderna i kvantitativa strukturaktivitetssamband. Med hjälp av dessa samband kunde vi prediktera och validera aktiviteten till aktiv eller inaktiv för fem av åtta nya salicylidenacylhydrazider i Y. pseudotuberculosis och sex av åtta i C. trachomatis. Eftersom verkningsmekanismen för salicylidenacylhydraziderna var okänd, så syntetiserade vi tre olika affinitetsmolekyler med kombinerad lösnings- och fastfas-syntes. En av affinitetsmolekylerna användes sedan för att ”fiska ut” och identifiera 19 potentiella målproteiner i ett bakterielysat från E. coli. Fyra av dessa proteiner, TpX, WrbA, FolX och AdhE har vi studerat vidare i Y. pseudotuberculosis och E. coli. Utifrån resultaten tror vi att salicylidenacylhydraziderna interagerar med flera proteiner som tillsammans resulterar i en nedreglering av type III sekretionssystemen. Vår samarbetspartner, Andrew Roe och hans forskargrupp (Universitetet i Glasgow), har studerat AdhE i E. coli. De har visat att E. coli som saknar genen för proteinet AdhE, har samma fenotyp som E. coli behandlad med salicylidenacylhydraziderna, d.v.s. ett nedreglerat T3SS, vilket gör AdhE till ett speciellt intressant målprotein. I jämförelse med många av våra nuvarande antibiotika som har ett naturligt ursprung så är de flesta studerade virulensblockare små syntetiska organiska molekyler. Därför testades en stor kollektion av naturprodukter från marina och landlevande växter och invertebrater från Sydostasien, för att hitta nya inhibitorer mot typ III sekretionssystemet i Y. pseudotuberculosis. Neohopeaphenol A som kommer från barken på Hopea hainanensis, ett träd som växer i sydostasiens regnskogar, identifierades som en ny virulensblockare. Neohopeaphenol A visade sig vara en potent virulensblockare i in vitro infektionsförsök med Y. psudotuberkulosis eller Pseudomonas aeruginosa. Forskningen i denna avhandling visar att virulensblockare kan hjälpa oss att förstå hur bakterier orsakar sjukdom. Förhoppningsvis kan det i framtiden leda till nya typer av läkemedel mot infektionssjukdomar.
|
937 |
Etude des propriétés biologiques et antimicrobiennes de la pyocyanine, pigment redox-actif produit par Pseudomonas aeruginosaBarakat, Rana 07 December 2012 (has links) (PDF)
La pyocyanine (PYO) est une phénazine de couleur bleu-vert, produite spécifiquement par la bactérie pathogène opportuniste Pseudomonas aeruginosa (Pa). La toxicité aérobie de la PYO envers les cellules de mammifères, les levures et les bactéries a été décrite de longue date, mais la compréhension des mécanismes d'action est encore lacunaire, en particulier en conditions de limitation en O2 (conditions rencontrées dans le contexte infectieux). De plus, il a récemment été montré que la PYO peut apporter des effets bénéfiques pour la souche productrice en hypoxie. Au cours de ce travail, nous avons réexaminé les effets de la PYO sur un large panel de bactéries dont son propre producteur (Pa) ainsi que sur un modèle cellulaire eucaryote Saccharomyces cerevisiae exposées à différentes tensions en O2. Nos données suggèrent que la toxicité aérobie de la PYO envers S. cerevisiae est multifactorielle, impliquant à la fois une interaction avec le complexe III de la chaîne respiratoire et l'induction d'un stress oxydatif. Pour la première fois, nous avons mis en évidence une toxicité de la PYO exacerbée en anaérobiose chez un eucaryote (S. cerevisiae). Le mécanisme d'action impliquerait le PYO radical. Nous avons également montré que la PYO peut inhiber la croissance aérobie et anaérobie des microorganismes concurrents, plus particulièrement S. aureus en bloquant le complexe III de la chaîne respiratoire. A l'inverse, la PYO peut stimuler la respiration de Pa surtout dans les conditions mimant le contexte infectieux (hypoxie, vie ralentie). Le complexe III et/ou les oxydases terminales cbb3 serait impliqué favorablement. En conclusion, la PYO jouerait à la fois un rôle de poison hypoxique mais aussi un rôle de navette redox bénéfique pour la survie et la virulence de Pa en hypoxie.
|
938 |
Les métaux lourds dans les écosystèmes anthropisés : une pression favorisant la sélection de pathogènes opportunistes résistants à des antibiotiques ?Deredjian, Amélie 17 December 2010 (has links) (PDF)
Pseudomonas aeruginosa et Stenotrophomonas maltophilia, pathogènes opportunistes majeurs, pourraient acquérir leur résistance aux antibiotiques dans l'environnement, sous la pression exercée par les métaux lourds par co-sélection de résistance. Nous avons tout d'abord évalué la distribution et l'abondance de ces espèces dans un large panel de sols d'origine géographique différente (France et Afrique) et évalué l'influence d'activités anthropiques susceptibles d'exposer les sols en éléments métalliques sur cette distribution. Alors que la présence de P. aeruginosa est sporadique et plutôt liée à un apport exogène, S. maltophilia est présente dans tous les sols étudiés, suggérant son endémicité. L'évaluation des résistances des souches isolées de ces sols a également montré des différences entre les deux espèces. Les souches environnementales de P. aeruginosa sont pour la plupart caractérisées par un phénotype sauvage alors que celles de S. maltophilia présentent une grande diversité de phénotypes en fonction des sites, parfois similaires à ceux de souches cliniques. Cette diversité peut être attribuée à l'adaptation aux conditions environnementales très différentes rencontrées mais il est difficile d'attribuer précisément aux métaux un rôle dans la co-sélection de ces résistances. L'étude menée sur la communauté bactérienne d'un sol contaminé a également permis de mettre en évidence une forte proportion de bactéries résistantes à différents antibiotiques représentée par des espèces qualifiées de pathogènes opportunistes ainsi que la présence du gène blaIMP, permettant la résistance à l'imipénème, utilisé en milieu clinique pour le traitement de clones multi-résistants.
|
939 |
Diversity of Pseudomonas aeruginosa Type IV Pilins and Identification of a Novel D-arabinofuranose Post-translational ModificationKus, Julianne 31 July 2008 (has links)
The opportunistic bacterial pathogen Pseudomonas aeruginosa uses type IV pili (T4P) for adherence to, and rapid colonization of, surfaces via twitching motility. T4P are formed from thousands of pilin (PilA) subunits. Two groups of P. aeruginosa pilins were described previously (I and II), distinguished by protein length and sequence. PilA_I was glycosylated with an O-antigen subunit through the action of PilO/TfpO, encoded downstream of pilA_I. To determine if additional pilin variants existed, analysis of the pilin locus of >300 P. aeruginosa strains from a variety of environments was conducted. Three additional pilin alleles were discovered, each of which was invariantly associated with a unique, previously unidentified, downstream gene(s): pilA_III+tfpY, pilAIV+tfpW+tfpX, pilA_V+tfpZ. This survey also revealed that strains with group I T4P were more commonly associated with respiratory infections than strains with other pilins, suggesting that glycosylated T4P may confer a colonization advantage in this environment. The newly identified group IV pilin, represented by strain Pa5196, migrated aberrantly through SDS-PA gels, suggesting it was also glycosylated, a hypothesis confirmed by periodic acid-Schiff staining and mass spectrometry (MS) analyses. Disruption of Pa5196 O-antigen biosynthesis did not prevent the production of glycosylated pilins, demonstrating that these pilins were modified in a novel manner, unlike group I pilins. Using MS, nuclear magnetic resonance spectroscopy and site-directed mutagenesis, the Pa5196 pilins were shown to be uniquely modified with homo-oligosaccharides of mycobacterial-like α-1,5-D-arabinofuranose at multiple locations. Residues Thr64 and Thr66, located on the αβ-loop region of the protein, appear to be the preferred, but not exclusive sites of modification, each being modified with up to four D-Araf sugars. This region of the pilin is partially surface-exposed in the pilus, therefore modification of these sites may influence the surface chemistry of the fibre. Residues Ser81, Ser82, Ser85 and Ser89, located in the β-strand region, were also modified, mainly with mono- and disaccharides. Bioinformatic analyses and mutagenesis of TfpW suggest that this novel protein is an arabinosyltransferase necessary for PilA_IV modification. This research has increased our understanding of the complexity of this virulence factor, and may aid in development of new therapeutics for P. aeruginosa and mycobacterial infections.
|
940 |
Quorum Sensing Inhibitory Activities of Various Folk-Medicinal Plants and the Thyme-tetracycline Effect.Nagy, Maria M 14 December 2010 (has links)
Pseudomonas aeruginosa is an opportunistic, nosocomial pathogen for which antibiotic resistance and biofilm development is common. Quorum sensing communication is known to be a major controlling factor in virulence gene expression, biofilm development, antibiotic resistance factors, and specifically MexAB-OprM multi-drug efflux pump expression in P.aeruginosa. MexAB-OprM efflux pumps contribute to antibiotic resistance of tetracycline and other antibiotics in pseudomonads and other organisms. P.aeruginosa infections are problematic in cystic fibrosis and burn patients; it is also the number one causative agent of respiratory infections for intensive care unit patients. Present day antibiotics are losing the battle against these infections. In theory, quorum sensing inhibitors (QSI) reduce pathogencity of the organism; making it less virulent, thus allowing either the host immune system to clear the infection or use of a QSI in combination with an antibiotic to clear more persistent pathogens. For these reasons two alternative modes of treatment were explored in this study: quorum sensing inhibition by folk-medicinal plant extracts and an example of combination drug therapy, the “thyme-tetracycline effect”.
Fifty folk-medicinal plant extracts were screened for potential anti-quorum sensing activity using two quorum sensing inhibition (QSI) reporter strains, Pseudomonas aeruginosa QSIS2 and Chromobacterium violaceum 12725. These were used to test specifically for C4-C6 and C12 HSL quorum sensing inhibition. Of the fifty plants tested, thirty plant families were represented. Eleven plant extracts (basil, chaparral, clove, cranberry, oregano, pomegranate, rosemary, sage, sassafras, thyme and witch hazel) showed C4 HSL quorum sensing inhibition as determined by both assays. Interestingly, five of the plants were from the Lamiaceae family. Thymus vulgaris (thyme), also from the Lamiaceae family, was chosen for further assessment.
Previous research has shown that thyme extract can synergistically augment tetracycline activity against tetracycline-resistant Pseudomonas aeruginos, creating the “thyme-tetracycline effect.” Disc diffusion assay, thin layer chromatography (TLC), and TLC bioassay techniques were used to show that thymol is the active component in the thyme extract that augments tetracycline activity against resistant Pseudomonas. This study also showed that thymol is a potent C4 HSL quorum sensing inhibitor. The collective data suggests a potential mode of action for the thyme-tetracycline effect: thymol appears to prevent MexAB-OprM efflux pump gene expression. By blocking MexAB-OprM expression, tetracycline antibiotic accumulation can occur within the cell, thus allowing cellular damage.
|
Page generated in 0.02 seconds