• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 77
  • 71
  • 30
  • 19
  • 16
  • 10
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 527
  • 128
  • 93
  • 75
  • 64
  • 62
  • 59
  • 55
  • 52
  • 50
  • 47
  • 43
  • 42
  • 41
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Molecular Studies of Mast Cell Migration and Apoptosis : Two Ways of Regulating Mast Cell Numbers at Sites of Inflammation

Alfredsson, Jessica January 2005 (has links)
<p>Upon activation mast cells release numerous proinflammatory mediators. With this feature, mast cells play an important role in host defense against pathogens, and are involved in tissue remodeling and wound healing. However, in cases of excessive inflammation the effects of mast cells are detrimental. This is observed in allergy, asthma, rheumatoid arthritis, atherosclerosis, certain types of heart failure, and in several other chronic destructive inflammations. Mast cell numbers are typically increased at inflammatory sites. There they act both directly, as effector cells, and in a regulatory manner, secreting agents that recruit and activate other immune cells.</p><p>The studies presented here investigated mechanisms regulating mast cell numbers at sites of inflammation, focusing on cell migration and regulation of survival/apoptosis. We report that SCF-induced mast cell migration requires p38 MAP kinase activity. Moreover, we found that SCF-mediated mast cell survival is regulated through downregulation of the proapoptotic Bcl-2 family member Bim, as well as through phoshorylation of Bim. SCF seems to control Bim protein levels via FOXO transcription factors, and to induce phosphorylation of Bim via the Mek/Erk and the PI3-kinase/Akt signaling pathways. Furthermore, mast cell death triggered by deprivation of SCF and/or IL-3 involves the Bim protein, as demonstrated using <i>bim</i>-/- mast cells. Additional studies revealed that IgE-receptor activation, which occurs in allergy, promotes both prosurvival and proapoptotic signaling events. This includes upregulation of Bim and the prosurvival Bcl-X<sub>L</sub> and A1, as well as phosphorylation of Akt, FOXO factors, GSK-3β, IκB-α, Bad, and Bim. The simultaneous stimulation of prosurvival and proapoptotic signaling events could be a way to fine-tune the fate of mast cells after IgE-receptor activation and degranulation.</p><p>The new insights about mechanisms involved in mast cell migration and regulation of survival/apoptosis might prove useful for future efforts to design new drugs to be used for mast cell-associated diseases.</p>
372

The tumor vasculature : functional reactivity and therapeutic implications

Sonveaux, Pierre 16 January 2004 (has links)
In the past decades, tumors have progressively been perceived as highly integrated systems in which the genetically unstable tumor cells and the genetically stable host cells cooperate to promote tumor growth. This view suggests that, beside tumor cells (that are targeted by conventional anticancer treatments such as radio- and chemotherapy), host cells within the tumor microenvironment can be targeted by antitumor therapy. Such alternative strategies are strongly supported by the need to overcome several limitations of the conventional therapies targeting tumor cells, such as collateral toxicity due to lack of tumor selectivity, limited tumor accessibility, and the selection of treatment-resistant variants. By contrast to tumor cells, the genetically stable host cells should not develop resistance to treatments. In this context, the observation that tumor growth is fundamentally dependent on the onset of a private tumor neovasculature (tumor angiogenesis) has revolutionized the field of cancer research. Several treatments have been developed aimed to prevent tumor angiogenesis (anti-angiogenic strategies) or to erase the existent tumor vasculature (anti-vascular approaches) supporting the survival and growth of thousands of tumor cells. However, although such therapies achieved cancer cure in animal models, they turned out to be rather inefficient when tested in patients. This can be attributed to differences in the angiogenic status between fast-growing animal tumors and slow-growing human tumors at the time of clinical detection. Another reading of the above-mentioned observations is that anticancer treatments could benefit from interventions aimed at increasing their efficiency. For instance, radiotherapy could benefit from tumor reoxygenation while a decrease in tumor interstitial pressure could facilitate tumor accessibility to circulating agents. In this context, the mature vasculature is an attractive target since it controls tumor blood supply and is highly accessible for therapy. Therefore, strategies aimed at exploiting its functional reactivity by inducing vasorelaxation have the potential to improve tumor perfusion/drug delivery and oxygenation/radiosensitivity. To be exploited in the clinics, such pro-vascular approaches have to fulfill essential requirements. First, they need to achieve high selectivity for tumor vessels. It should prevent systemic toxicity as well as the stealing of the blood flow towards the peripheral vasculature. Second, vasodilation has to be transient, so that the tumor should not take advantage of an increased energetic supply to grow faster. Third, the therapeutic effects have to be achieved in several tumor types and in different host strains to gain a wide therapeutic range of applicability. Finally, vasomodulation has to be achieved with interventions relevant to the clinical situation, ensuring direct therapeutic significance. However, the therapeutic exploitation of agents modulating tumor perfusion was generally hampered by confounding effects on the systemic blood pressure. In our studies, we have documented that this lack of tumor selectivity can be overcome by identifying vasomodulatory pathways that are selectively altered within the tumor microenvironment, allowing selective vasomodulatory interventions. According to the criteria detailed above, to identify a differential tumor vascular reactivity, we had to work with mice models of mature tumor vascularization. We reasoned that preexisting host arterioles in mice, if coopted, should retain architectural characteristics (such as a muscular coat) necessary for functional reactivity but also be influenced by the tumor microenvironment at both molecular and functional levels. To gain in reproducibility, this model was developed by injecting syngeneic tumor cells in the vicinity of the saphenous arteriole (i.e., a collateral branch of the femoral artery) in the rear leg of mice. With tumor growth, this arteriole was progressively included in the tumor cortex (coopted), with side branches running deeply into tumors. This model was developed using several tumors and mice strains. It provides the unique advantage to allow the easy identification and isolation of mature tumor vessels from fast-growing animal tumors. To evaluate differential vasoreactivity in those tumor-coopted vessels, we adapted pressure myography, a device initially dedicated to the study of the reactivity of coronary arterioles (see annex 1). In our hands, the unprecedented application of pressure myography to the study of small tumor vessels proved to be very efficient. Indeed, this technique not only served us to confirm that arterioles remain sensitive to vasomodulation under tumor cooption, but also allowed us to evidence two major adaptations of host vessels to the tumor microenvironment: the acquisition of an ET-1-mediated basal constrictive tone and a defect in the vasodilatory NO pathway. Furthermore, we used pressure myography to identify and characterize vasomodulatory strategies exploiting these differential reactivities. More particularly, we showed that both BQ123 (an ETA inhibitor) and ionizing radiations (that restored a functional NO pathway) promoted the vasodilation of the tumor-coopted vessels. In vivo, we verified that these strategies fulfilled the essential requirements of pro-vascular approaches: tumor selectivity, transient effects, broad range of applicability, and therapeutic significance in clinically relevant regimens. This latter study led us to further explore the effects of radiotherapy on the status of the tumor vasculature. Hence, we showed that fractionated radiotherapy induced tumor angiogenesis, thereby providing a rationale to combine radiotherapy to anti-angiogenic therapies.
373

Huntingtine et mitose

Molina-Calavita, Maria 22 October 2012 (has links) (PDF)
La maladie de Huntington (MH) est une maladie neurodégénérative héréditaire autosomique dominante. Elle résulte d'une expansion anormale de glutamines (polyQ) dans la partie N-terminale de la protéine huntingtine (HTT ; codé par HTT). La MH est caractérisée par la dysfonction et la mort de cellules neuronales dans le cerveau, entraînant l'apparition de symptômes cognitifs, psychiatriques et moteurs, dévastateurs chez les patients. De nombreuses études sur des modèles animaux et cellulaires montrent que l'expansion polyQ dans la protéine mutante conduit à un gain de nouvelles fonctions toxiques, ainsi qu'à la perte de fonctions neuroprotectives de la protéine sauvage. Pendant ma thèse, je me suis intéressée à la description et à la validation fonctionnelle d'un nouvel outil pour étudier la HTT : pARIS-htt. pARIS-htt est un gène synthétique construit pour faciliter le clonage et le marquage de la protéine HTT totale. En utilisant différentes approches cellulaires, nous avons montré que pARIS-htt peut remplacer le rôle de la HTT endogène dans le transport de vésicules du Golgi ainsi que du brain derived neurotrophic factor (BDNF). La version mutante de pARIS-htt ne peut pas restaurer cette fonction. Parallèlement, nous avons généré deux variants de pARIS-htt avec soit une délétion dans la région d'interaction de la HTT avec la dynéine, moteur moléculaire se dirigeant vers l'extrémité négative des microtubules, soit avec la huntingtin associated protein 1 (HAP1), l'un de ses interacteurs. Dans les expériences de remplacement du gène, aucun des deux mutants n'a restauré le transport vésiculaire.Un autre aspect de ma thèse a été d'étudier le rôle de la HTT au cours de la mitose. Nous avons mis en évidence l'importance de la HTT dans le contrôle de l'orientation du fuseau. Cette fonction est perdue lorque la HTT est mutée, mais restaurée lorsque celle-ci est phosphorylée par Akt à la sérine 421. Le contrôle de l'orientation du fuseau est particulièrement important durant la neurogénèse puisque cette orientation ainsi que le mode de division sont impliqués dans la détermination des devenirs cellulaires. Cette fonction de la HTT est conservée chez la D. melanogaster.Cette étude a donc permis de mieux comprendre les fonctions de la HTT, et de proposer de nouvelles cibles thérapeutiques pour traiter la MH.
374

Molecular Studies of Mast Cell Migration and Apoptosis : Two Ways of Regulating Mast Cell Numbers at Sites of Inflammation

Alfredsson, Jessica January 2005 (has links)
Upon activation mast cells release numerous proinflammatory mediators. With this feature, mast cells play an important role in host defense against pathogens, and are involved in tissue remodeling and wound healing. However, in cases of excessive inflammation the effects of mast cells are detrimental. This is observed in allergy, asthma, rheumatoid arthritis, atherosclerosis, certain types of heart failure, and in several other chronic destructive inflammations. Mast cell numbers are typically increased at inflammatory sites. There they act both directly, as effector cells, and in a regulatory manner, secreting agents that recruit and activate other immune cells. The studies presented here investigated mechanisms regulating mast cell numbers at sites of inflammation, focusing on cell migration and regulation of survival/apoptosis. We report that SCF-induced mast cell migration requires p38 MAP kinase activity. Moreover, we found that SCF-mediated mast cell survival is regulated through downregulation of the proapoptotic Bcl-2 family member Bim, as well as through phoshorylation of Bim. SCF seems to control Bim protein levels via FOXO transcription factors, and to induce phosphorylation of Bim via the Mek/Erk and the PI3-kinase/Akt signaling pathways. Furthermore, mast cell death triggered by deprivation of SCF and/or IL-3 involves the Bim protein, as demonstrated using bim-/- mast cells. Additional studies revealed that IgE-receptor activation, which occurs in allergy, promotes both prosurvival and proapoptotic signaling events. This includes upregulation of Bim and the prosurvival Bcl-XL and A1, as well as phosphorylation of Akt, FOXO factors, GSK-3β, IκB-α, Bad, and Bim. The simultaneous stimulation of prosurvival and proapoptotic signaling events could be a way to fine-tune the fate of mast cells after IgE-receptor activation and degranulation. The new insights about mechanisms involved in mast cell migration and regulation of survival/apoptosis might prove useful for future efforts to design new drugs to be used for mast cell-associated diseases.
375

The Role and Regulation of p53-associated, Parkin-like Cytoplasmic Protein (PARC) in p53 Subcellular Trafficking and Chemosensitivity in Human Ovarian Cancer Cells

Woo, Michael G. 26 March 2012 (has links)
Resistance to cisplatin (CDDP)-based therapy is a major hurdle to the successful treatment of human ovarian cancer (OVCA) and the chemoresistant phenotype in OVCA cells is associated with Akt-attenuated, p53-mediated apoptosis. Pro-apoptotic functions of p53 involve both transcription-dependent and -independent signaling pathways and dysfunctional localization and/or inactivation of p53 contribute to the development of chemoresistance. PARC is a cytoplasmic protein regulating p53 subcellular localization and subsequent function. Little is known about the molecular mechanisms regulating PARC. Although PARC contains putative caspase-3 cleavage sites, and CDDP is known to induce the activation of caspases and calpains and induce proteasomal degradation of anti-apoptotic proteins, if and how PARC is regulated by CDDP in OVCA is unknown. Here we present evidence that CDDP promotes calpain-mediated PARC down-regulation, mitochondrial and nuclear p53 accumulation and apoptosis in chemosensitive but not resistant OVCA cells. Inhibition of Akt is required to sensitize chemoresistant cells to CDDP in a p53-dependent manner, an effect enhanced by PARC down-regulation. CDDP-induced PARC down-regulation is reversible by inhibitor of calpain but not of caspase-3 or the 26S proteasome. Furthermore, in vitro experiments confirm the ability of calpain in mediating Ca2+-dependent PARC down-regulation. The role of Ca2+ in PARC down-regulation was further confirmed as ionomycin induced PARC down-regulation in both chemosensitive and chemoresistant ovarian cancer cells. The data presented here implicates the regulation of p53 subcellular localization and apoptosis by PARC as a contributing factor in CDDP resistance in OVCA cells and Ca2+/calpain in PARC post-translational processing and chemosensitivity.
376

The Role and Regulation of p53-associated, Parkin-like Cytoplasmic Protein (PARC) in p53 Subcellular Trafficking and Chemosensitivity in Human Ovarian Cancer Cells

Woo, Michael G. 26 March 2012 (has links)
Resistance to cisplatin (CDDP)-based therapy is a major hurdle to the successful treatment of human ovarian cancer (OVCA) and the chemoresistant phenotype in OVCA cells is associated with Akt-attenuated, p53-mediated apoptosis. Pro-apoptotic functions of p53 involve both transcription-dependent and -independent signaling pathways and dysfunctional localization and/or inactivation of p53 contribute to the development of chemoresistance. PARC is a cytoplasmic protein regulating p53 subcellular localization and subsequent function. Little is known about the molecular mechanisms regulating PARC. Although PARC contains putative caspase-3 cleavage sites, and CDDP is known to induce the activation of caspases and calpains and induce proteasomal degradation of anti-apoptotic proteins, if and how PARC is regulated by CDDP in OVCA is unknown. Here we present evidence that CDDP promotes calpain-mediated PARC down-regulation, mitochondrial and nuclear p53 accumulation and apoptosis in chemosensitive but not resistant OVCA cells. Inhibition of Akt is required to sensitize chemoresistant cells to CDDP in a p53-dependent manner, an effect enhanced by PARC down-regulation. CDDP-induced PARC down-regulation is reversible by inhibitor of calpain but not of caspase-3 or the 26S proteasome. Furthermore, in vitro experiments confirm the ability of calpain in mediating Ca2+-dependent PARC down-regulation. The role of Ca2+ in PARC down-regulation was further confirmed as ionomycin induced PARC down-regulation in both chemosensitive and chemoresistant ovarian cancer cells. The data presented here implicates the regulation of p53 subcellular localization and apoptosis by PARC as a contributing factor in CDDP resistance in OVCA cells and Ca2+/calpain in PARC post-translational processing and chemosensitivity.
377

BRCA1 185delAG mutant protein, BRAt, amplifies caspase-mediated apoptosis and maspin expression in ovarian cells /

O'Donnell, Joshua D. January 2008 (has links)
Dissertation (Ph.D.)--University of South Florida, 2008. / Includes vita. Also available online. Includes bibliographical references (leaves 93-111).
378

Mechanisms of dopamine toxicity in oligodendrocytes

Hemdan, Sandy, 1977- January 2008 (has links)
Oligodendrocyte progenitors are highly sensitive to oxidative insults. Among the factors postulated to contribute to this susceptibility are high levels of intracellular iron and low antioxidant content. During ischemia, the neurotransmitter dopamine (DA) is released and may contribute to oxidative stress and oligodendrocyte injury in the hypomyelinating disorder, periventricular leucomalacia (PVL). In this thesis, I investigated the role of iron in DA-induced toxicity in primary cultures of oligodendrocyte progenitors, and assessed the contribution of the antioxidant defenses (glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) and other survival factors (heat shock proteins and the protein kinase Akt) in determining the response of the cells to DA. / Addition of iron to cultures increased DA-induced expression of the stress protein heme oxygenase-1 (HO-1), and toxicity as assessed by mitochondrial activity, cellular release of lactate dehydrogenase, nuclear condensation and caspase-3 activation. In contrast, an iron chelator reduced these events. Furthermore, DA induced accumulation of superoxide, which was also reduced by the iron chelator. Surprisingly, a mimetic of the superoxide detoxifying enzyme, SOD potentiated DA toxicity, suggesting that generation of hydrogen peroxide via superoxide dismutation may be contributing to toxicity. Both a mimetic of the peroxide-scavenging enzyme, GPx and a GSH analog blocked DA-induced superoxide accumulation, HO-1 expression and caspase-3 activation. In addition, the GPx mimetic blocked caspase-3 activation induced by the combination of DA with iron. In contrast, an inhibitor of glutathione synthesis potentiated DA-induced HO-1 expression and cell death. / Finally, in further examining the cellular defense mechanisms, I found that various heat shock proteins increased in expression levels during oligodendroglial differentiation, however only heat shock protein-90 (HSP-90) was detected in oligodendrocyte progenitors. An HSP-90 inhibitor decreased activated Akt levels, induced caspase-3 activation, increased nuclear condensation, reduced oligodendrocyte progenitor viability, and potentiated DA-induced apoptosis. In addition, an Akt inhibitor alone exacerbated DA toxicity and in combination with the HSP-90 inhibitor caused synergistic potentiation of DA toxicity by enhancing caspase-3 activation. / In conclusion, elevated levels of iron, superoxide, deficient detoxification of peroxides by glutathione peroxidase and inadequate defense by glutathione contribute to the susceptibility of oligodendrocyte progenitors to DA-induced toxicity. On the other hand, HSP-90 alone or in concert with Akt play important roles in oligodendrocyte progenitors survival following an insult that produces oxidative stress.
379

Rôle des GTPases ARF dans la migration des cellules endothéliales et la sécrétion du NO

Daher, Zeinab 06 1900 (has links)
ARF6 et ARF1 sont des petites GTPases de la famille des ARF(s) qui régulent plusieurs voies de signalisation comprenant, la formation et le mouvement des vésicules, la transformation des lipides membranaires et la réorganisation du cytosquelette d’actine. À ce jour, le rôle de la protéine ARF6 et de la protéine ARF1 dans la signalisation des récepteurs couplés aux protéines G (RCPG) et des récepteurs à activité tyrosine kinase (RTK) dans les cellules endothéliales est encore très peu étudié. Le but de cette étude a été de caractériser le rôle de la protéine ARF6 dans la migration des cellules endothéliales induite par l’endothéline-1, ainsi que le rôle de la protéine ARF1 dans la sécrétion du monoxyde d’azote (NO) stimulées par le VEGF. Dans cette étude, nous montrons qu’ARF6 est essentielle à la migration des cellules endothéliales induite par l’endotheline-1. L’inhibition de l’expression d’ARF6 par interférence à l’ARN entraîne une activation marquée de la kinase FAK et son association constitutive avec Src. Par ailleurs, cette inhibition affecte l’association entre GIT1 et la kinase FAK. Ceci se traduit par une inhibition du désassemblage des contacts focaux et une augmentation de l’adhésion cellulaire menant à une diminution de la motilité. De plus, nos résultats montrent que la protéine ARF1 est essentielle à l’activation d’eNOS et à la sécrétion du NO suite à l’activation du VEGFR2 dans les cellules endothéliales BAEC. En effet, l’inhibition de l’expression d’ARF1 par interférence à l’ARN entraîne une inhibition du recrutement de la kinase Akt à la membrane plasmique et une inhibition de son activation induite par le VEGF. L’inhibition de l’activation de la kinase Akt par le VEGF conduit à une inhibition de l’activation de eNOS et de la sécrétion du NO. Dans l’ensemble, nos résultats montrent que les protéines ARF6 et ARF1 sont essentielles à la signalisation de l’ETB et du VEGFR2 pour les processus menant à la migration cellulaire et à la sécrétion du NO respectivement, deux évènements essentiels à l’angiogenèse. / ARF6 and ARF1 are small GTPases of the ARF family(s) that regulate several signalling pathways including vesicles trafficking, lipid membrane remodelling and actin cytoskeleton reorganization. To date, the role of ARF6 and ARF1 in GPCR and RTK signalling, in endothelial cells, is little known. In this thesis, we aimed to characterize the role of ARF6 in the migration of endothelial cells induced by Enodothelin-1, and the role of ARF1 in the secretion of NO induced by VEGF. We show that ARF6 is essential for endothelial cell migration induced by endothelin-1. Inhibition of ARF6 expression using RNA interference markedly impaired basal and ET-1 stimulated cell migration. In this condition, FAK is found constitutively associated with Src. In contrast, depletion of ARF6 impairs the ability of GIT1 to form an agonist-promoted complex with FAK, thereby preventing disassembly of focal adhesions. As a consequence, adhesion of ARF6-depleted endothelial cells is increased and their motility is reduced. Furthermore, our result shows that ARF1 GTPase is essential for the activation of eNOS and the secretion of NO following VEGFR2 activation in endothelial cells. Inhibition of ARF1 expression using RNA interference markedly impaired the recruitment of Akt to the plasma membrane and its phosphorylation by the VEGF. As a consequence, the inhibition of Akt leads to an inhibition of eNOS, a well known downstream target, which in turn leads to inhibition of NO production. All together, our results indicate that ARF6 and ARF1 are essential for the ETB and the VEGFR2 signalling leading to cell migration and NO secretion respectively, two required steps for angiogenesis.
380

Epithelial and vascular progenitors in the developing lung: Newer insights and therapeutic implications

Stanislaus Alphonse, Anthuvan Rajesh Unknown Date
No description available.

Page generated in 0.0199 seconds