• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 33
  • 29
  • 23
  • 21
  • 19
  • 16
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Determinação das constantes cinéticas de nitritação e nitratação em função da temperatura.

GUERRA, Tuilly de Fátima Macedo Furtado. 07 August 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-08-07T20:04:03Z No. of bitstreams: 1 TUILLY DE FÁTIMA MACEDO FURTADO GUERRA – DISSERTAÇÃO (PPGECA) 2016.pdf: 2570702 bytes, checksum: dc3123f0ac79b6573767e39e1c19c4c4 (MD5) / Made available in DSpace on 2018-08-07T20:04:03Z (GMT). No. of bitstreams: 1 TUILLY DE FÁTIMA MACEDO FURTADO GUERRA – DISSERTAÇÃO (PPGECA) 2016.pdf: 2570702 bytes, checksum: dc3123f0ac79b6573767e39e1c19c4c4 (MD5) Previous issue date: 2017-03-17 / Capes / O processo Anammox essencialmente é a desnitrificação autotrófica na qual nitrogênio amoniacal é oxidado por nitrito para nitrogênio molecular. O nitrito pode ser produzido em águas residuárias pela oxidação da amônia pelas Nitrosomonas. Todavia, tem-se que evitar que as bactérias do gênero Nitrobacter se desenvolvam para evitar a oxidação do nitrito para nitrato. O processo Anammox se aplica particularmente em águas ricas em amônia e pobres em material orgânico, como por exemplo, efluentes de digestores anaeróbios. Na prática tem sido aplicado com sucesso para efluentes de digestores de lodo aquecidos a 37 °C, mas a aplicação à temperatura ambiente na Europa (5 a 15 °C) não tem sido eficiente, pela dificuldade de eliminação da etapa de nitratação. Na presente pesquisa, procurou-se estabelecer se a nitrificação parcial é factível para a faixa de temperatura de esgotos no Brasil, para uma possível aplicação do processo Anammox visando à remoção de nitrogênio dos efluentes de reatores UASB. Para tanto, foram determinadas as constantes cinéticas da nitritação e nitratação em um sistema de lodo ativado entre a faixa de temperaturas de 12,7°C a 31 °C e as constantes de meia saturação do oxigênio dissolvido. A respirometria foi a ferramenta utilizada para determinar as taxas de nitritação e de nitratação e estimar as outras constantes cinéticas relevantes, sendo mostrado pelos resultados que esta é uma ferramenta útil na determinação das constantes cinéticas. Os valores encontrados das constantes cinéticas de crescimento das nitritadoras e nitratadoras em função da temperatura mostraram uma tendência de prevalecimento da nitritação sobre a nitratação em toda a faixa avaliada. Através da determinação da idade lodo mínima para a nitritação e nitratação pode-se estimar que operando um sistema de lodo ativado a temperatura ambiente adotando uma idade de lodo de 4 dias é possível promover a nitrificação parcial. / The Anammox process is essentially autotrophic denitrification in which ammoniacal nitrogen is oxidized by nitrite to molecular nitrogen. Nitrite can be produced in wastewater by the oxidation of ammonia by Nitrosomonas. However, it has to be avoided that bacteria of the genus Nitrobacter develop to avoid the oxidation of nitrite to nitrate. The Anammox process is applied particularly in ammonium rich waters and poor in organic material, such as effluent from anaerobic digesters. In practice it has been successfully applied to effluent from sludge digesters heated to 37 ° C, but application at room temperature in Europe (5 to 15 ° C) has not been efficient due to the difficulty of eliminating the nitration step. In the present research, it was tried to establish if the partial nitrification is feasible for the range of sewage temperature in Brazil, for a possible application of the Anammox process aiming at the removal of nitrogen from UASB reactor effluents. For this, the kinetic constants of nitriding and nitration were determined in an activated sludge system between the temperature range of 12.7 ° C to 31 ° C and the half-saturation constants of the dissolved oxygen. The respirometry was the tool used to determine nitration and nitration rates and to estimate the other relevant kinetic constants, and it is shown by the results that this is a useful tool in the determination of kinetic constants. The values of the kinetic constants of the nitriding and nitrating agents as a function of temperature showed a tendency of nitriding over nitration over the entire range. By determining the age minimum sludge for nitriding and nitration it can be estimated that operating a sludge activated system at room temperature adopting a sludge age of 4 days can promote partial nitrification.
92

Mainstream Deammonification process monitoring by bacterial activity tests

Carranza Muñoz, Andrea January 2020 (has links)
Deammonification is a widely used technology for side stream treatment with rich ammonium streams at relatively high temperatures, such as, the reject water coming from dewatering units in treatment of digested sludge and industrial wastewaters. The deammonification process has lower operational costs than conventional systems, consumes less energy, enables the increase of biogas production and it is easy to implement. However, this technology has not yet been applied in full- scale mainstream treatment due to its restrictions in coping with high C/N ratios, low temperatures, and the need for post-treatment processes. These conditions are allegedly negative to the growth and performance of anammox bacteria affecting the bacterial groups’ behavior in the process. This master thesis project aimed to evaluate the feasibility of using deammonification to remove nitrogen from mainstream wastewater, which was studied by monitoring the bacterial activity in a pilot scale reactor. The different bacterial groups involved (AOB, NOB, heterotrophs, and denitrifiers) were monitored by weekly measuring their activity in batch activity tests. The results allowed the evaluation of different operational scenarios and their impact by following up on the changes in the bacterial competition. The study was conducted for six months in a single-stage IFAS (integrated fixed-film activated sludge) pilot-scale reactor located in Stockholm and fed with pretreated (with a UASB) municipal wastewater. The different operational scenarios involved changes in temperature, aeration patterns, DO concentration, SRT, and HRT. The adjustment of these features was done in the interest of promoting AOB and anammox bacterial growth, leading to an improvement of the deammonification efficiency in future studies. However, the chosen operational conditions were to enhance bacterial competition and facilitate its visualization, not to maximize nitrogen removal. Thus, the most suitable scenario found during this study included DO concentration of 1.5 mg/L with 10 aeration-20 non-aeration pattern and ensured nitrogen removal rates within normal values while allowing the monitoring of all the bacterial groups. TN removal reached a value above 50% and NH4-N above 95%, whereas nitrogen Removal Rate (NRR) increased to 30g/N/m3-d and the system had an overall nitrogen removal efficiency of 75%. Nevertheless, it was proven that in the right environment, the necessary bacterial groups can be selectively accumulated and successfully perform deammonification and reduce nitrogen levels in mainstream wastewater. / Deammonifikation är en välanvänd teknik för rening av sidoströmmar med höga ammoniumkoncentrationer vid relativt hög temperatur, som till exempel rejektvatten från avvattning av rötslam eller industriellt avloppsvatten. Deammonifikationsprocessen har lägre driftkostnad än konventionella reningsprocesser, förbrukar mindre energi samt möjliggör högre biogasproduktion samtidigt som processen är enkel att implementera. Reningstekniken har dock ännu inte tillämpats i fullskala för rening av huvudströmmen på grund av den höga C/N-kvoten och de låga vattentemperaturerna i kommunalt avloppsvatten samt behovet av efterbehandling. Detta anses ha en negativ inverkan på anammoxbakteriernas tillväxthastighet och funktion vilket påverkar bakteriegruppens beteende i processen. Syftet med detta examensarbete var att utvärdera om det är praktiskt genomförbart att använda deammonifikation för att rena kväve från kommunalt avloppsvatten, vilket följdes upp genom att studera bakterieaktiviteten i en pilotskalereaktor. De involverade bakteriegrupperna (AOB, NOB, heterotrofer och denitrifierare) övervakades genom att mäta den mikrobiella aktiviteten varje vecka med hjälp av batch-tester. Resultaten användes till att utvärdera olika driftstrategier och deras effekt genom att följa förändringarna i mikrobiell aktivitet hos de konkurrerande bakteriegrupperna. Studien genomfördes i Stockholm under sex månader i en enstegs-IFAS-pilotskalereaktor (integrerad process med biofilm på fast bärarmaterial och aktivslam) som matades med kommunalt avloppsvatten som förbehandlats i en UASB-reaktor. De olika driftstrategierna omfattade olika temperaturer, luftningsstrategier, syrekoncentrationer, slamåldrar och hydrauliska uppehållstider. Syftet med driftstrategierna var att främja AOB- och anammoxbakteriers tillväxt för att i framtida studier kunna erhålla en förbättrad deammonifikationsprocess. Syftet i denna studie var dock i första hand att förbättra den bakteriella konkurrensen och göra den lättare att mäta, inte att uppnå bästa möjliga kväverening. Den driftstrategi som gav bäst resultat i denna studie innebar att hålla en syrehalt på 1,5 mg/l med 10 minuter luftning följt av 20 minuter utan luftning vilket säkerställde en normal kväveavskiljning och samtidigt möjliggjorde övervakning av samtliga fyra bakteriegrupper. Totalkväveavskiljningen var över 50 % och ammoniumavskiljningen över 95 % medan kvävereningsaktiviteten ökade till 30 g N/m3-d och systemet hade en övergripande effektivitet på 75 %. Studien visade att under rätt förutsättningar kan de nödvändiga bakteriegrupperna selekteras fram och deammonifikation av kommunalt avloppsvatten kan utföras på ett framgångsrikt sätt.
93

Treatment of High-Strength Nitrogen Wasetewater With a Hollow-Fiber Membrane-Aerated Biofilm Reactor: A Comprehensive Evaluation

Gilmore, Kevin R. 17 September 2008 (has links)
Protecting the quality and quantity of our water resources requires advanced treatment technologies capable of removing nutrients from wastewater. This research work investigated the capability of one such technology, a hollow-fiber membrane-aerated biofilm reactor (HFMBR), to achieve completely autotrophic nitrogen removal from a wastewater with high nitrogen content. Because the extent of oxygenation is a key parameter for controlling the metabolic processes that occur in a wastewater treatment system, the first part of the research investigated oxygen transfer characteristics of the HFMBR in clean water conditions and with actively growing biofilm. A mechanistic model for oxygen concentration and flux as a function of length along the non-porous membrane fibers that comprise the HFMBR was developed based on material properties and physical dimensions. This model reflects the diffusion mechanism of non-porous membranes; namely that oxygen follows a sorption-dissolution-diffusion mechanism. This is in contrast to microporous membranes in which oxygen is in the gas phase in the fiber pores up to the membrane surface, resulting in higher biofilm pore liquid dissolved oxygen concentrations. Compared to offgas oxygen analysis from the HFMBR while in operation with biofilm growing, the model overpredicted mass transfer by a factor of approximately 1.3. This was in contrast to empirical mass transfer coefficient-based methods, which were determined using either bulk aqueous phase dissolved oxygen (DO) concentration or the DO concentration at the membrane-liquid interface, measured with oxygen microsensors. The mass transfer coefficient determined with the DO measured at the interface was the best predictor of actual oxygen transfer under biofilm conditions, while the bulk liquid coefficient underpredicted by a factor of 3. The mechanistic model exhibited sensitivity to parameters such as the initial lumen oxygen concentration (at the entry to the fiber) and the diffusion coefficient and partitioning coefficients of oxygen in the silicone membrane material. The mechanistic model has several advantages over empirical-based methods. Namely, it does not require experimental determination of KL, it is relatively simple to solve without the use of advanced mathematical software, and it is based upon selection of the membrane-biofilm interfacial DO concentration. The last of these is of particular importance when designing and operating HFMBR systems with redox (aerobic/anoxic/anaerobic) stratification, because the DO concentration will determine the nature of the microenvironments, the microorganisms present, and the metabolisms that occur. During the second phase of the research, the coupling of two autotrophic metabolisms, partial nitrification to nitrite (nitritation) and anaerobic ammonium oxidation, was demonstrated in a single HFMBR. The system successfully treated a high-strength nitrogen wastewater intended to mimic a urine stream from such sources as extended space missions. For the last 250 days of operation, operating with an average oxygen to ammonia flux (J<sub>O₂</sub>/J<sub>NH₄⁺</sub>) of 3.0 resulted in an average nitrogen removal of 74%, with no external organic carbon added. Control of nitrite-oxidizing bacteria (NOB) presented a challenge that was addressed by maintaining the J<sub>O₂</sub>/J<sub>NH₄⁺</sub> below the stoichiometric threshold for complete nitrification to nitrate (4.57 g O₂ / g NH₄⁺). The DO-limiting condition resulted in formation of harmful gaseous emissions of nitrogen oxides (NO, N2O), which could not be prevented by short-term control strategies. Controlling JO2/JNH4+ prevented NOB proliferation long enough to allow an anaerobic ammoniaoxidizing bacteria (AnaerAOB) population to develop and be retained for >250 days. Addition of a supplemental nutrient solution may have contributed to the growth of AnaerAOB by overcoming a possible micronutrient deficiency. Disappearance of the gaseous nitrogen oxide emissions coincided with the onset of anaerobic ammonium oxidation, demonstrating a benefit of coupling these two autotrophic metabolisms in one reactor. Obvious differences in biofilm density were evident across the biofilm depth, with a region of low density in the middle of the biofilm, suggesting that low cell density or exocellular polymeric substances were primarily present in this region, Microbial community analysis using fluorescence in situ hybridization (FISH) did not reveal consistent trends with respect to length along the fibers, but radial stratification of aerobic ammonia-oxidizing bacteria (AerAOB), NOB, and AnaerAOB were visible in biofilm section samples. AerAOB were largely found in the first 25% of the biofilm near the membrane, AnaerAOB were found in the outer 30%, and NOB were found most often in the mid-depth region of the biofilm. This community structure demonstrates the importance of oxygen availability as a determinant of how microbial groups spatially distribute within an HFMBR biofilm. The combination of these two aspects of the research, predictive oxygen transfer capability and the effect of oxygen control on performance and populations, provides a foundation for future application of HFMBR technology to a broad range of wastewaters and treatment scenarios. / Ph. D.
94

Evaluation of Nitration/Anammox process by bacterial activity tests.

Mika, Anna January 2015 (has links)
Partial Nitritation/Anammox process (deammonification process), by which occurs oxidation of ammonium to nitrogen gas by autotrophic bacteria in anaerobic conditions, considered to be cost-effective and environmentally friendly method of nitrogen removal. Present research work focuses on achieving a high nitrogen removal degree, thanks to Anammox bacteria, while providing the best performance of the ongoing process. Integrated fixed-film activated sludge (IFAS) reactor was supplied with the main stream of the wastewater after UASB reactor, characterized by low concentration of nitrogen and organic matter. The bacteria ability to accommodate, were tested in the biofilm and in the activated sludge, depending on the different stages in which the process were being conducted. Batch test, such as Specific Anammox Activity (SAA), Nitrate Uptake Rate (NUR) and Oxygen Uptake Rate (OUR), were used for the evaluation of activity of various groups of bacteria. On the basis of laboratory analysis verified the values obtained from the batch tests. It was determined that a high degree of nitrogen removal (92% of NH4-N) was achieved thanks to the dominant activity of the Anammox bacteria, with low participation of other groups of bacteria. It was also proved, that Anammox bacteria activity were overwhelming in the biofilm. Dominant role of Ammonium Oxidizing Bacteria (AOB) was associated with high activity of Anammox bacteria, which together satisfyingly out-competed Nitrite Oxidizing Bacteria (NOB) and heterotrophic bacteria. It has been shown that Anammox bacteria quickly adapt to the new conditions and they are able to assume a dominant role, even in the case of inoculation of the reactor with the sludge from SBR. This allows conclude, that in the case of operational problems, the reactor can be supplied from another source, in order not to inhibit the process.
95

Internal loading of nitrogen (N) and phosphorus (P), reduced N forms, and periodic mixing support cyanobacterial harmful algal blooms (HABs) in shallow, eutrophic Honeoye Lake (New York, USA)

Myers, Justin Adam 03 June 2021 (has links)
No description available.

Page generated in 0.0185 seconds