421 |
Anthrax, Matrix Biology, and Angiogenesis: Capillary Morphogenesis Gene 2 Mediates Activity and Uptake of Type IV Collagen-Derived Anti-Angiogenic PeptidesFinnell, Jordan Grant 01 June 2017 (has links)
Capillary Morphogenesis Gene 2 (CMG2) is a type I transmembrane, integrin-like receptor. It was originally identified as one of several genes upregulated during capillary formation. It was subsequently identified as one of two physiological anthrax toxin receptors, where CMG2 serves as a cell-surface receptor for anthrax toxin and mediates entry of the toxin into cells via clathrin-dependent endocytosis. Additionally, loss-of-function mutations in CMG2 cause the genetic disorder hyaline fibromatosis syndrome (HFS), where the core symptom is dysregulation of extracellular matrix homeostasis (ECM), including excessive accumulation of proteinaceous hyaline material; HFS clearly indicates that CMG2 plays an essential function in ECM homeostasis and repair. Most often, these situational roles have been evaluated as separate intellectual and experimental entities; consequently, whereas details have emerged for each respective situational role, there has been little attempt to synthesize knowledge from each situational role in order to model a holistic map of CMG2 function and mechanism of action in normal physiology.The work presented in this thesis is an example of such a synthesis. Interactions between CMG2 and type IV collagen (Col IV) were evaluated, to better understand this putative interaction and its effect on CMG2 function in angiogenesis. Using an overlapping library peptide array of the Col IV α1 and α2 chains, it was found that CMG2-binding peptides were enriched within the NC1 domains. This finding was corroborated via another epitope mapping peptide array, where we found a major epitope for CMG2-binding within the α2 NC1 domain (canstatin). Identification of CMG2 interactions with Col IV NC1 domains (including canstatin) was both surprising and intriguing, as these domains are potent endogenous inhibitors of angiogenesis. To further evaluate the physiological relevance of interactions with Col IV NC1 domains, a canstatin-derived peptide from the original array was synthesized and used for further studies. This peptide (here known as S16) binds with high affinity (KD = 440 ± 160 nM) to the extracellular, ligand-binding CMG2 vWA domain; specificity was confirmed through competition studies with anthrax toxin PA, and through demonstration of divalent cation-dependent binding. CMG2 was found to be the relevant endothelial receptor for S16. CMG2 in fact mediates endocytic uptake of peptide S16, as demonstrated by flow cytometry, and colocalization studies. S16 further inhibits migration of endothelial cells. These findings demonstrate that CMG2 is a functional receptor for Col IV NC1 domain fragments. CMG2 may exert a pro-angiogenic effect through endocytosis and clearance of anti-angiogenic NC1 domain fragments. Additionally, this is the first demonstration of CMG2-mediated uptake of an endogenous matrix fragment, and suggests a mechanism by which CMG2 regulates ECM and basement membrane homeostasis, thereby establishing a functional connection between the receptor's role in matrix biology and angiogenesis.
|
422 |
Characterization of Heat Shock Protein A12B as a Novel Angiogenesis Regulator.Steagall, Rebecca J 12 August 2008 (has links)
Previously, we cloned Heat shock protein A12B (HspA12B), the newest member of a recently defined subfamily of proteins distantly related to the Hsp70 family that are enriched in atherosclerotic lesions. We have found that HspA12B is predominantly expressed in vascular endothelium, and that it is involved in angiogenesis which we probed by in vitro angiogenesis assays (Matrigel), migration assays and Directed In Vivo Angiogenesis Assay (DIVAA). Hsp70s are molecular chaperones that are inducible by stress and have been found to be anti-apoptotic (Li et al. 2000; Nylandsted et al. 2000; Garrido et al. 2001). Because of its homology to Hsp70, we propose that it is the first endothelial-specific chaperone that is required for angiogenesis and interacts with known angiogenesis regulators. To begin to understand the molecular mechanisms underlying the role of HspA12B in angiogenesis, we turned our attention to identifying proteins that are involved in angiogenesis and also interact with HspA12B. Through the use of a yeast two-hybrid (Y2H) system HspA12B was found to interact with a known angiogenesis regulator, A Kinase Anchoring Protein 12 (AKAP12). This interaction was confirmed by co-immunoprecipitation and by colocalization. In primary human umbilical vein endothelial cells (HUVECs), shRNA mediated HspA12B knockdown increased AKAP12 levels and decreased VEGF by more than 75%, whereas HspA12B over-expression decreased AKAP12 and more than doubled VEGF levels. We further identified a 32-Amino Acid (32-AA) domain in AKAP12 that mediates interaction with HspA12B. Over-expression of this 32-AA domain in HUVECs disrupted the HspA12B-AKAP12 interaction and decreased VEGF expression suggesting the importance of the HspA12B-AKAP12 interaction in regulating VEGF. This is the first evidence that HspA12B promotes angiogenesis resulting in up-regulation of VEGF by suppressing AKAP12. Consistent with the proposed role in angiogenesis, HspA12B was also found to be increased in endothelial cells (ECs) by angiogenic stresses including hypoxia and shearing stress while knockdown of HspA12B abolished hypoxia-induced tubule formation. This work provides new insight into the mechanisms controlling angiogenesis by providing the first example of an EC-specific molecular chaperone that acts as a regulator of angiogenesis and lays the foundation for future studies of HspA12B-derived therapeutics for angiogenesis related diseases.
|
423 |
Molecular Mechanisms of Interleukin-1beta-Stimulated Regulation of Angiogenesis in Cardiac Microvascular Endothelial Cells.Mountain, Deidra Jill Hopkins 15 December 2007 (has links)
Angiogenesis, the formation of new vessels from a preexisting vasculature, is critical for supplying a healing myocardium with oxygen and nutrients to sustain metabolism post myocardial infarction (MI). Interleukin-1β (IL-1β), a proinflammatory cytokine increased in the heart post-MI, is considered essential for angiogenesis in tumor growth and metastasis, arthritis, endometriosis, and wound healing. Matrix metalloproteinases (MMPs) are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Vascular endothelial growth factors (VEGFs) play a vital role in angiogenesis because of their involvement in the recruitment and proliferation of endothelial cells. The current study explores IL-1β-stimulated regulation of angiogenic genes in cardiac microvascular endothelial cells (CMECs), the signaling mechanisms involved, and the implications in the processes of angiogenesis. DNA microarray analysis indicated IL-1β modulates the expression of numerous angiogenesis-related genes, notably upregulating MMP-2 and downregulating VEGF-D expression. RT-PCR and Western blot analyses confirmed the differential expression in response to IL-1β. In-gel zymographic analysis demonstrated IL-1β-stimulated increase in MMP-2 activity. IL-1β activated ERK1/2 and JNKs, not p38 kinase, and activated PKCα/β1 independent of MAPKs. IL-1β inactivated GSK3β via ERK1/2. Pharmacological inhibition of these signaling cascades indicated IL-1β-stimulated regulation of MMP-2 and VEGF-D occurs via ERK1/2, JNKs, and PKCα/β1-dependent mechanisms. In addition, inactivation of GSK3β inhibited basal VEGF-D expression. H2O2 significantly increased MMP-2 protein levels while IL-1β-induced VEGF-D downregulation was further potentiated by ROS scavenging compounds and inhibition of NF-κB. Phalloidin-FITC stain indicated a sharp reduction in fibrillar actin in the cytoskeleton of IL-1β-stimulated cells. Wounding assays revealed that IL-1β induced CMEC migration but prevented cell-to-cell contact and restoration of the monolayer. Flow cytometric analysis revealed a G0/G1 phase cell cycle arrest in IL-1β-stimulated cells, indicative of decreased proliferation. IL-1β inhibited three-dimensional in vitro tube formation by CMECs. Lastly, IL-1β inhibited microvessel sprouting from aortic rings, an assay examining the collective response of multiple cell types. Collectively, the data presented in this study provide evidence that IL-1β differentially regulates important angiogenesis-related genes in CMECs. This differential regulation may lead to interruptions in the processes of angiogenesis, ultimately creating a dysfunctional phenotype for myocardial vessel formation.
|
424 |
Jun regulates monocyte-derived macrophage accumulation and tumour progression / Jun régule l'accumulation des macrophages dérivés de monocytes et la progression tumoraleDelfini, Marcello 09 April 2019 (has links)
Les macrophages sont des cellules immunitaires innées présentes dans chaque organe. Ils sont des cibles thérapeutiques dans de nombreuses maladies, dont le cancer. En dépit de travaux récents sur l'origine des macrophages, les mécanismes régulant leur différenciation sont mal définis. L'expression de Jun, membre de la famille AP-1, augmente pendant la différenciation des macrophages, mais son rôle dans ce processus n'est pas connu.Au cours de mon doctorat, nous avons caractérisé le rôle de Jun dans le développement et l'homéostasie des macrophages, dans un modèle de souris avec délétion conditionnelle de Jun dans la lignée myéloïde (JunΔCsf1r). Nous montrons que Jun contrôle la différenciation, induite par CSF1, des monocytes en macrophages. In vivo, Jun régule l'accumulation de macrophages dérivés de monocytes dans les poumons et intestins. Les macrophages associés aux tumeurs (TAMs) jouent un rôle crucial dans la progression des cancers. L’absence de Jun freine la croissance d’un mélanome et la différenciation, induite par CSF1, des TAMs dérivés de monocytes qui participent à l’angiogénèse tumorale. Cependant, lors d'une inflammation aiguë, Jun n’affecte pas le recrutement de macrophages inflammatoires.En conclusion, nos résultats identifient Jun comme un régulateur central de la différenciation des macrophages. Dans un modèle de mélanome, les macrophages Jun-dépendants exercent des fonctions pro-tumorales. Le fait que Jun soit un régulateur sélectif du développement des macrophages dépendants de CSF-1 permettra de définir de nouvelles approches ciblant sélectivement la différenciation des macrophages, sans altérer les réponses immunitaires dépendantes des monocytes. / Macrophages are immune cells present in every organ. Given their variety of functions, macrophages are therapeutic targets in many diseases including cancer. Despite the research efforts to characterise their origins, the molecular mechanisms regulating macrophage differentiation are still poorly defined. Expression of the AP-1 factor, Jun, increases during differentiation, but its role in macrophage development is not known.During my PhD, we characterised how Jun affects macrophage development and homeostasis. We developed a conditional mouse model in which Jun is deficient in the myeloid lineage (JunΔCsf1r). We showed that Jun controls CSF1-mediated monocyte to macrophage differentiation, proliferation and survival. In vivo, Jun loss limits macrophage accumulation in lungs and intestine. Tumour-associated macrophages (TAMs) play critical roles in cancer progression. We observed that Jun deficiency dampens melanoma growth and the differentiation of CSF1-dependent monocyte-derived TAMs. We further showed that Jun-dependent TAMs mediate vessel normalisation in melanoma. During inflammation, Jun was dispensable for the recruitment of monocyte-derived inflammatory macrophages.Altogether, our results identify Jun as a master regulator of macrophage differentiation, without altering monocyte effector functions. In a melanoma model, we showed that Jun-dependent TAMs play tumour-promoting roles. Therefore, Jun is a selective regulator of CSF-1-dependent macrophage development, which is redundant during inflammation; this observation should help to define novel approaches to selectively target macrophage differentiation, without altering monocyte-dependent immune responses.
|
425 |
Complexos rutênio-catecolaminas como moduladores da angiogênese. Aspectos químicos e biológicos da relação estrutura-atividade / Ruthenium complex-catecholamines as modulators of angiogenesis. The chemical and biological properties of the relationship structure-activityAlves, Jacqueline Querino 28 March 2017 (has links)
O câncer é um problema de saúde mundial que ceifa a vida de muitas pessoas, todos os dias. Nesse sentido, pesquisas voltadas à melhor compreensão do seu progresso e cura são de vital importância. Assim, um importante aspecto do desenvolvimento e crescimento de um tumor é a formação de novos vasos sanguíneos - angiogênese - e o desenvolvimento vascular. As catecolaminas estão envolvidas neste processo, entretanto, sua participação e mecanismos de ação ainda não estão completamente elucidados. Neste sentido, a contribuição específica do sítio catecólico e do sítio amínico, para a interação entre as catecolaminas e seus receptores específicos, bem como a relação com a angiogênese, tornou-se objeto de interesse de estudo. A fim de avaliar a participação de cada grupamento específico, realizou-se a imobilização do sítio catecólico, pela coordenação ao metal rutênio, gerando complexos com fórmula [Ru(NH3)4(cat-R)]Cl, onde \"cat-R\" é isoproterenol, dopamina, noradrenalina, catecol ou adrenalina. Cálculos teóricos e propriedades físico-químicas (por diversas técnicas) foram analisados após a coordenação ao íon metálico. Estudos de estabilidade fotoquímica foram conduzidos. Na sequência, estudou-se a atividade citotóxica e angiogênica destes complexos - utilizando-se como plataforma a membrana corioalantoica (CAM) de embriões de galinha. Para avaliar a atividade moduladora do tônus vascular exercida por estes compostos, estudos de reatividade vascular foram conduzidos para os complexos metálicos em comento, em aorta torácica de ratos. Os resultados obtidos sugerem se tratarem de agonistas parciais e/ou antagonistas dos respectivos receptores. Posteriormente, realizaram-se estudos em células para a análise de aumento de cálcio intracelular, em células tratadas com os complexos. Outrossim, ensaios de regeneração celular foram conduzidos com o intuito de se avaliar a atividade antiproliferativa dos complexos metálicos. Embora a possibilidade de interação específica entre os complexos com fórmula [Ru(NH3)4(cat-R)]Cl com os receptores celulares tenha sido verificada, estudos de interação com fs-DNA, via espectroscopia UV-vis e por deslocamento do brometo de etídio - acompanhada por espectroscopia de fluorescência - foram conduzidos. Na sequência, a interação entre os complexos e a proteína do soro humano albumina (HSA) foi analisada, por supressão de fluorescência. Posteriormente, com a finalidade de se entender o quanto a alteração dos coligantes afetaria as propriedades biológicas dos complexos, uma nova série de complexos metálicos com fórmula genérica [Ru(bpy)2(cat-R)]Cl onde \"cat-R\" é isoproterenol, dopamina, noradrenalina, catecol ou adrenalina. Essas novas espécies foram caracterizadas por técnicas físico-químicas e testada em alguns dos ensaios biológicos realizados para os complexos precedentes. Os resultados evidenciaram que as catecolaminas possuem atividade na angiogênese, sendo que seus efeitos podem ser modulados quando há impedimento do sítio catecólico, por exemplo, pela coordenação ao metal rutênio. Além disso, a substituição dos coligantes amônia, por ligantes piridínicos ocasionou o aumento da citotoxicidade, bem como da interação com DNA (provavelmente por mecanismos de intercalação) e HSA. / Cancer is a global health problem that causes the death of many people every day. In this way, researches aimed at understanding the progress and cure of this disease are desirable. Therefore, an important aspect of the development and growth of a tumor is the formation of the new blood vessels, known as angiogenesis, and the vascular development. The catecholamines are involved in this process, however, their role and mechanism of action are not completely elucidated. In this way, interaction between catecholamines and its receptors should be of interest, in order to understand the blocking mechanism of angiogenesis. Interactions with receptor should occur by catechol or amine site. In order to evaluate the participation of each specific group, the immobilization of the catechol site has been achieved by coordination to the ruthenium metal ion, generating [Ru(NH3)4(cat-R)]Cl, whereas \"cat-R\" is isoproterenol, dopamine, noradrenaline, catechol or adrenaline. Theoretical calculations and physical chemistry properties were analyzed after coordination to the metal ion. Photochemical studies were conducted. Subsequently, the cytotoxicity and angiogenic activity of these complexes were studied - using the chorioallantoic membrane (CAM) of chicken embryos - as well the vascular tone modulating activity of these compounds - analyzed in thoracic aorta of rats. The results obtained suggest that they are partial agonists and/or antagonists of the respective receptors. The intracellular calcium increase was analyzed in cells treated with the complexes. Moreover, cell regeneration assays were conducted with the purpose of evaluating the antiproliferative activity of the ruthenium complexes. Although the possibility of specific interaction between [Ru(NH3)4(cat-R)]Cl complexes with cell receptors have been verified, we have checked also the involvement of DNA on all process. For this fs-DNA interaction studies using UV-vis spectroscopy and with ethidium bromide displacement assay were performed. Afterwards, the interaction between the complexes and Human serum albumin protein (HAS) was evaluated, by fluorescence quenching. The next question to be answered is concerning to the structure of ruthenium complex. Aiming to understand this we have synthesized new [Ru(bpy)2(cat-R)]Cl complexes whereas \"cat-R\" is isoproterenol, dopamine, noradrenaline, catechol or adrenaline. Those species were physical chemistry characterized, and they were analyzed by some biological assays. In conclusion, the results showed that catecholamines have activity in angiogenesis, and their effects can be modulated when the catechol site is not available, for example by the coordination of the ruthenium metal. In addition, the substitution of amino ligands by pyridine ligands has resulted in increased cytotoxicity as well as interaction with DNA (probably by intercalating mechanism) and HSA.
|
426 |
Régulation dépendante du contexte de la morphogenèse et de l’intégrité capillaire par angiopoietin-like 4 / Context-dependent regulation of capillary morphogenesis and integrity by angiopoietin-like 4Liabotis-Fontugne, Athanasia 07 September 2018 (has links)
L’angiogenèse, indispensable à la mise en place d’un réseau vasculaire fonctionnel, est au cœur des stratégies thérapeutiques des pathologies ischémiques. L’hypoxie, caractérisant ces tissus ischémiques, est un stimulus majeur de l’angiogenèse, en induisant l’expression de facteurs de croissance tels que le VEGF et de protéines de la matrice extracellulaire endothéliale. Nous avons identifié la protéine ANGPTL4, comme une cible majeure de l’hypoxie et ayant des effets opposés au VEGF sur la perméabilité vasculaire. Le but de cette thèse a consisté en l’analyse du rôle d’ANGPTL4 sur la formation de capillaire et l’organisation des jonctions adhérentes dans un contexte dépendant du VEGF. J’ai démontré que le VEGF stimule la formation d’un dense réseau capillaire 3D alors qu’ANGPTL4 induit la formation de capillaires étroits et peu ramifiés. ANGPTL4 réduit la taille du réseau de capillaire induit par le VEGF en limitant le nombre de bourgeons, de branchements et la largeur des capillaires. ANGPTL4 renforce l’intégrité des capillaires formés en présence de VEGF en préservant des jonctions adhérentes stables. J’ai démontré qu’ANGPTL4 limite les processus de migration 3D et de prolifération induits par le VEGF. L’analyse de la voie de signalisation VEGF/ANGPTL4 a montré une potentialisation par ANGPTL4 de la phosphorylation Y1175 du VEGFR2, impliqué dans l’internalisation de VEGFR2. En conclusion, ce modèle révèle un effet d’ANGPTL4 dépendant du contexte 3D, qui stimule les processus d’angiogenèse en absence de VEGF et qui contrecarre la morphogenèse induite par le VEGF en renforçant l’intégrité des jonctions adhérentes et en régulant la signalisation en aval du VEGFR2. / Angiogenesis, by promoting new functional capillaries, is a main target of therapeutic strategies of ischemic pathologies. Ischemic tissues are characterized by hypoxic environment, which stimulates angiogenesis by inducing expression and secretion of growth factors such as VEGF and by remodeling endothelial extracellular matrix. Our team identified ANGPTL4 as a hypoxia-induced target and characterized its counteracting effect on VEGF-induced vascular permeability. This PhD study therefore aimed to decipher the role of ANGPTL4 on angiogenesis, capillary architecture and adherens junction (VE-cadherin) organization in a VEGF-dependent context. I demonstrated that VEGF induced formation of branched capillaries forming a dense 3D network while ANGPTL4 enhanced the formation of unbranched and tight capillaries. Remarkably, ANGPTL4 reduces VEGF-induced angiogenesis, by limiting branching and widening of the capillaries. Furthermore, ANGPTL4 regulates the local VE-cadherin patterning during the sprouting process by maintaining lateral linear structures and limiting the VEGF-induced formations involved in the migratory capacities. I demonstrated that ANGPTL4 limited VEGF-induced 3D endothelial cell migration and proliferation. Analysis of VEGF/ANGPTL4 signaling pathway pointed out that ANGPTL4 enhanced phosphorylation of Y1175 VEGFR2, known to enhance internalization of VEGFR2. In conclusion, this study modeled the 3D context-dependent effect of ANGPTL4 that stimulates angiogenesis in absence of VEGF whereas it counteracts VEGF-induced endothelial morphogenesis by regulating VEGFR2 trafficking and strengthening adherens junctions.
|
427 |
Implications de l'adrénomédulline sécrétée par les fibroblastes associés au cancer dans la croissance tumorale / Implications of adrenomedullin secreted by cancer-associated fibroblasts in tumor growthBenyahia, Zohra 05 December 2016 (has links)
Le cancer du sein est la première cause de mortalité chez la femme par cancer. Différents travaux ont montré l’implication des fibroblastes associés au cancer (CAFs) dans la résistance thérapeutique, ainsi que leur rôle dans le développement de cancer du sein. L’adrénomédulline (AM) joue un rôle crucial dans la croissance des tumeurs. Dans notre étude, nous nous sommes interrogés sur l’apport de l’AM sécrétée par la composante majeure du stroma tumoral les CAFs, dans le développement du cancer du sein. Dans cette étude nous avons montré que les CAFs isolés à partir des tumeurs issues du cancer du sein, présentent une augmentation de l’expression du système d’AM (AM et ses récepteurs) par rapport aux fibroblastes non activés (NHDFs). Nos études dans le modèle d’angiogenèse in vivo montrent que les CAFs sont plus compétents à mettre en place une vascularisation stable et fonctionnelle par rapport aux NHDFs. Cependant, le traitement des souris avec des anticorps anti récepteurs de l’AM (αAMRs) bloque la vascularisation. De plus, les xénogreffes issues du mélange MCF-7/CAFs génèrent des tumeurs plus importantes par rapport aux tumeurs issues de MCF-7 seules ou combinées aux NHDFs. Les souris traitées par voie i.p. avec des αAMRs ou l’antagoniste AM22-52, montrent une inhibition de la croissance tumorale des xénogreffes. Les études immunohistochimiques montrent une vascularisation bien établie chez le groupe MCF-7/CAFs, qui est altérée suite au blocage du système de l’AM.Notre étude montre le rôle important de l’AM sécrétée par les CAFs dans le processus de la tumorigenèse du cancer du sein. / Breast cancer is the leading cause of death among women with cancer. Various studies have shown the involvement of cancer associated fibroblasts (CAFs) in this therapeutic resistance and their role in the development of the tumor. Adrenomedullin (AM) plays a critical role in tumor growth. In our study, we asked about the contribution of AM secreted by the major component of the tumor stroma CAFs in breast cancer development. In this study, we demonstrate that CAFs isolated from tumors derived from breast cancer, showed an increase in the expression of AM (AM and its receptors) compared to non-activated fibroblasts (NHDFs). Our studies in vivo angiogenesis model shows that CAFs are more competent to set-up a stable and functional vasculature compared to NHDFs. However, treatment of mice with antibodies anti AM receptor (αAMRs) blocks vascularization, indicating the role of AM secreted by CAFs in the establishment of neovascularization. Additionally, xenografts from MCF-7 mixture / CAFs generate larger tumors compared to tumors from MCF-7 alone or combined with NHDFs. Mice treated, mice treated by intra-peritoneal (i.p.) injection with αAMRs or antagonist AM22-52, show inhibition of tumor growth of xenografts. Immunohistochemical studies show an established vasculature in the MCF-7 / CAFs group, which is impaired due to the blocking of the AM system.Our study shows the important role of the AM secreted by CAFs in the process of breast cancertumorigenesis. It provides an evidence of the effectiveness of a therapy anti-AM, which will target as one of the most predominant components of breast cancer tumor microenvironment.
|
428 |
Obésité et cancer mammaire : Influence des adipocytes sur le processus d'angiogénèse et la moindre réponse thérapeutique / Influence of adypocyte secretions on angiogenic process and lesser therapeutic responseBougaret, Lauriane 16 September 2015 (has links)
L'obésité, en constance augmentation, est un facteur de risque établi de cancer mammaire chez les femmes en post-ménopause associé à un mauvais pronostic favorisant la survenue de métastases et la moindre réponse thérapeutique chez ces patientes. Parmi les différentes hypothèses émises expliquant ce lien entre obésité et cancer, plusieurs arguments bibliographiques suggèrent une implication des sécrétions adipocytaires, dont les concentrations plasmiques sont modulées en situation d'obésité, dans la tumorogenèse mammaire. Les objectifs de ce travail étaient d'analyser le rôle des sécrétions adipocytaires, reflétant une situation d'obésité, dans le processus d'angiogenèse ainsi que dans la moindre réponse thérapeuthique aux traitements anti-cancéreux, notamment d'hormonothérapie.(...)Nos résultats suggèrent que les sécrétions adipocytaires sont impliquées dans la régulation de la tumorogenèse mammaire ce qui ouvre des perspectives préventives et/ou thérapeutiques prometteuses, ciblant les adipokines, pour les femmes en surpoids particulièrement à risque. / Obesity, constantly incrasing, is an established risk factor for breast cancer in post-menopausal women associed with a pour prognosis favoring the occurence of metastases and lower therapeutic response in these patient. Among the various hypotheses explaining the link between obesity and breast cancer, multiple bibliographic arguments suggest the involvement of adipocyte secretions, whose plasma concentrations are modulated in case of obesity, in mammary tumorogenesis. The objectives of thesis were to highlight the implication of adipocyte secretions, in a context of obesity, in the angiogenic process and therapeutic response to hormonal cancer traetments. (...) Adipocyte secretions are involved in the regulation of mammary tumorigenesis which opens up promising preventive or therapeutic perspectives targeting adipokines in situation of overweight.
|
429 |
Bartonella henselae Infection and Host Response in the Zebrafish Embryo ModelLima, Amorce 07 July 2014 (has links)
The Gram-negative bacterium Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases including bacillary angiomatosis which is characterized by vasoproliferative tumor-like lesions on the skin and internal organs of some immunosuppressed individuals. Several virulence factors associated with Bartonella-induced pathogenesis have been characterized. However, the study of those virulence factors has been limited to in vitro cell culture systems due to the lack of a practical animal model. Therefore, we wanted to investigate whether the zebrafish embryo (Danio rerio) could be used to model human infection with Bh. We investigated if Bh can mount an infection in zebrafish embryos during their early stage of development. Our data showed that Tg(fli1:egfp)y1 zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. This was evident by plating of zebrafish homogenates, quantitative PCR, and confocal microscopy analysis. We assessed the interaction of Bh with EC and the phagocytic cells in live embryos by microscopy. Our data showed that aggregates of Bh interact with the endothelium of the embryo vasculature. Evidence showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. We also wanted to determine the response to infection with Bh. Infected embryos showed evidence of a Bh-induced angiogenic phenotype as well as an increase in expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. A deletion mutant for the entire VirB type IV secretion system (ΔvirB2-11 supported bacterial replication although to a lesser degree compared to the wild type control. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished pro-angiogenic and pro-inflammatory host response compared to wild type Bh, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical animal model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis.
|
430 |
Role of SerpinB2 in tumour cellsLee Major Unknown Date (has links)
SerpinB2 (aka plasminogen activator type 2) is well described as an extracellular inhibitor of urokinase-type plasminogen activator (uPA). However, the majority of SerpinB2 is retained intracellularly, and many uPA-independent activities have been reported for SerpinB2 suggesting an alternate function. This thesis explores the role of SerpinB2 in epithelial tumour cell lines, highlights the problems associated with various expression systems and argues that SerpinB2 has no role in growth or apoptosis of tumour cells. A potential role for immune modulation and angiogenesis is suggested in in vivo models. Previous research using SerpinB2 transfected, clonally selected tumour cell lines suggested that SerpinB2 regulates the retinoblastoma tumour suppressor protein (Rb) by binding and protecting Rb from degradation. Despite the use of two techniques under numerous conditions and positive controls, no significant interaction between SerpinB2 and Rb was found. SerpinB2 was reported to bind Rb through a PENF homology motif located within the SerpinB2 C-D interhelical loop region. The PENF homology motif was postulated to represent the motif responsible for binding to the C-pocket of Rb. Epstein Barr Virus nuclear antigen 6 (EBNA6) is a known Rb binding protein, which contains two predicted PENF homology motifs. However, mutation of the two PENF homology motifs within EBNA6 did not reduce Rb binding. Furthermore, the SerpinB2 PENF homology motif is actually not well conserved between SerpinB2 proteins from multiple species, whereas other regions of the SerpinB2 C-D loop show a high level of conservation. These data do not support a role for SerpinB2 and the PENF homology motif in Rb binding. SerpinB2 has been proposed to have a role in regulating growth and apoptosis. To further investigate this proposed phenotype of SerpinB2, SerpinB2 was expressed in a range of epithelial tumour lines using transient transfection. No change in growth, apoptosis or Rb levels were found. After ≈2-3 month antibiotic selection for the SerpinB2-expressing plasmid, SerpinB2 protein was lost without the loss of the transgene, indicating selective pressure against long-term SerpinB2 protein expression. To further investigate long-term SerpinB2 expression adenovirus and lentivirus vectors were used. Infection of tumour cell lines with adenovirus vectors expressing SerpinB2 resulted in reduced cell growth, characterised by increased p53 (but not Rb) levels and G2 arrest or apoptosis. When SerpinB2 expressing lentivirus vectors were used to transduce the same tumour cell lines, high levels of long-term expression of functional SerpinB2 was achieved. However, SerpinB2-expressing cell lines showed no differences in growth, proliferation, Rb levels, or apoptosis induced by a range of agents. Growth and apoptosis observed with adenovirus SerpinB2 had all the characteristics of adenovirus-associated toxicity, which has been reported previously for specific proteins. These experiments highlighted the problems associated with SerpinB2 expression systems and suggest that SerpinB2 expression per se is not toxic nor has a role in regulating Rb, growth and apoptosis. Screening of a number of tumour cell lines identified the HPV16 transformed cervical cancer line as expressing high levels of SerpinB2. SerpinB2 was located both extracellularly and intracellularly with a cytoplasmic and nuclear distribution. A high molecular weight SerpinB2 species was identified in CaSki cells and was shown to be the N-linked glycosylated species. Sequencing showed the protein to be Type A SerpinB2 and the protein was shown to form an inhibitory complex with uPA. An abundant low molecular weight SerpinB2 species was also identified in CaSki cell supernatants and appeared to be a proteolytic fragment of SerpinB2. Treatment of CaSki with PMA, TNFα and IFNγ increased SerpinB2 levels. Lentiviral based shRNA failed to significantly down regulate SerpinB2 expression and increasing SerpinB2 levels with lentiviral expression did not change growth, apoptosis, Rb levels or E7 transcription. Lentiviral expression of SerpinB2 in (normally SerpinB2 negative) HPV16 transformed SiHa cells, also failed to show changes in Rb levels or E7 transcription. CaSki thus express wild-type and functional SerpinB2, but no evidence could found that SerpinB2 effects HPV16 E7 transcription or Rb levels. The data presented identifies CaSki as valuable source of biologically functional SerpinB2. SerpinB2 expression in breast cancer cells has been associated with positive prognosis. Tubo, a SerpinB2-negative murine breast carcinoma cell line, was transduced with lentivirus expressing SerpinB2 and grown subcutaneously in BALB/c mice. SerpinB2 expressing tumours appeared red and were larger than control tumours. Furthermore, SerpinB2 expressing tumours had a ≈2 fold higher density of blood vessels when compared to Tubo and Tubo expressing EGFP. Mice carrying tumours expressing SerpinB2 also showed reduced anti-tumour IgG2 responses. These data suggest that a role for SerpinB2 in regulating angiogenesis and antitumour immunity. In conclusion, this thesis challenges the notion that SerpinB2 regulates Rb, cell cycle, and apoptosis and suggests a potential role for SerpinB2 in tumour angiogenesis and immunity.
|
Page generated in 0.0332 seconds