• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 714
  • 176
  • 133
  • 90
  • 33
  • 22
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 15
  • 15
  • 8
  • Tagged with
  • 1417
  • 290
  • 270
  • 170
  • 128
  • 111
  • 108
  • 92
  • 80
  • 79
  • 78
  • 74
  • 73
  • 72
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

A study of cosmic ray anisotropies in the heliosphere / Godfrey Sibusiso Nkosi

Nkosi, Godfrey Sibusiso January 2006 (has links)
Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
792

Magnetic field-induced phase transformation and variant reorientation in Ni2MnGa and NiMnCoIn magnetic shape memory alloys

Karaca, Haluk Ersin 15 May 2009 (has links)
The purpose of this work is to reveal the governing mechanisms responsible for the magnetic field-induced i) martensite reorientation in Ni2MnGa single crystals, ii) stress-assisted phase transformation in Ni2MnGa single crystals and iii) phase transformation in NiMnCoIn alloys. The ultimate goal of utilizing these mechanisms is to increase the actuation stress levels in magnetic shape memory alloys (MSMAs). Extensive experimental work on magneto-thermo-mechanical (MTM) characterization of these materials enabled us to i) better understand the ways to increase the actuation stress and strain and decrease the required magnetic field for actuation in MSMAs, ii) determine the effects of main MTM parameters on reversible magnetic field induced phase transformation, such as magnetocrystalline anisotropy energy (MAE), Zeeman energy (ZE), stress hysteresis, thermal hysteresis, critical stress for the stress induced phase transformation and crystal orientation, iii) find out the feasibility of employing polycrystal MSMAs, and iv) formulate a thermodynamical framework to capture the energetics of magnetic field-induced phase transformations in MSMAs. Magnetic shape memory properties of Ni2MnGa single crystals were characterized by monitoring magnetic field-induced strain (MFIS) as a function of compressive stress and stress-induced strain as a function of magnetic field. It is revealed that the selection of the operating temperature with respect to martensite start and Curie temperatures is critical in optimizing actuator performance. The actuation stress of 5 MPa and work output of 157 kJm−3 are obtained by the field-induced variant reorientation in NiMnGa alloys. Reversible and one-way stress-assisted field-induced phase transformations are observed in Ni2MnGa single crystals under low field magnitudes (<0.7T) and resulted in at least an order of magnitude higher actuation stress levels. It is very promising to provide higher work output levels and operating temperatures than variant reorientation mechanisms in NiMnGa alloys. Reversible field-induced phase transformation and shape memory characteristics of NiMnCoIn single crystals are also studied. Reversible field-induced phase transformation is observed only under high magnetic fields (>4T). Necessary magnetic and mechanical conditions, and materials design and selection guidelines are proposed to search for field-induced phase transformation in other ferromagnetic materials that undergo thermoelastic martensitic phase transformation.
793

Spin-Orbit and Spin-Spin Coupling in the Triplet State

Perumal, Sathya Sai Ramakrishna Raj January 2012 (has links)
The underlying theory of “Spin” of an electron and its associated inter-actions causing internal fields and spectral shift to bulk-magnetism iswell established now. Our understanding of spin properties is significant andmore useful than ever before. In recent years there seems to be an enormousinterest towards application oriented materials that harness those spin prop-erties. Theoretical simulations remain in a position to “assist or pilot” theexperimental discovery of new materials.In this work, we have outlined available methodologies for spin coupling inmulti-reference and DFT techniques. We have benchmarked multi-referencespin-Hamiltonian computation in isoelectronic diradicals - Trimethylenemethane(TMM) and Oxyallyl. Also with DFT, parameters are predicted with anewly discovered TMM-like stable diradicals, reported to have large positiveexchange interactions. Excellent agreement were obtained and our findingsemphasize that the dipole-dipole interactions alone can predict the splittingof triplet states and that DFT spin procedures hold well in organic species.We have extended our spin-studies to a highly application oriented ma-terial - nanographene. Using our novel spin-parameter arguments we haveexplained the magnetism of graphene. Our studies highlight a few signifi-cant aspects - first there seems to be a size dependency with respect to thespin-Hamiltonian; second, there is a negligible contribution of spin-orbit cou-pling in these systems; third, we give a theoretical account of spin restrictedand unrestricted schemes for the DFT method and their consequences forthe spin and spatial symmetry of the molecules; and, finally, we highlightthe importance of impurities and defects for magnetism in graphene. Wepredict triplet-singlet transitions through linear response TDDFT for thetris(8-hydroxyquinoline) aluminium complex, an organic molecule shown tohave spintronics applications in recent experiments. Our spin studies werein line with those observations and could help to understand the role of thespin-coupling phenomena. / QC 20120531
794

Magnetic properties of transition metal compounds and superlattices

Broddefalk, Arvid January 2000 (has links)
Magnetic properties of selected compounds and superlattices have been experimentally studied using SQUID (superconducting quantum interference device) and VSM (vibrating sample magnetometer) magnetometry, neutron diffraction and Mössbauer spectroscopy measurements combined with theoretical ab initio calculations. The magnetic compounds (Fe1-xMx)3P, M=Co or Mn have been studied extensively. It was found that Co can substitute Fe up to x=0.37. Increasing the Co content leads to a reduction of the Curie temperature and the magnetic moment per metal atom. Mn can substitute Fe up to x=0.25 while Fe can be substituted into Mn3P to 1-x=0.33. On the iron rich side, the drop in Curie temperature and magnetic moment when increasing the Mn content is more rapid than for Co substitution. On the manganese rich side an antiferromagnetic arrangement with small magnetic moments was found. The interlayer exchange coupling and the magnetocrystalline anisotropy energy of Fe/V superlattices were studied. The coupling strength was found to vary with the thickness of the iron layers. To describe the in-plane four-fold anisotropy, the inclusion of surface terms proved necessary. The in-plane four fold anisotropy was also studied in a series of Fe/Co superlattices, where the thickness of the Co layers was kept thin so that the bcc structure could be stabilized. Only for samples with a large amount of iron, the easy axis was found to be [100]. The easy axis of bulk bcc Co was therefor suggested to be [111].
795

Characterization of Hydrogeological Media Using Electromagnetic Geophysics

Linde, Niklas January 2005 (has links)
Radio magnetotellurics (RMT), crosshole ground penetrating radar (GPR), and crosshole electrical resistance tomography (ERT) were applied in a range of hydrogeological applications where geophysical data could improve hydrogeological characterization. A profile of RMT data collected over highly resistive granite was used to map subhorizontal fracture zones below 300m depth, as well as a steeply dipping fracture zone, which was also observed on a coinciding seismic reflection profile. One-dimensional inverse modelling and 3D forward modelling with displacement currents included were necessary to test the reliability of features found in the 2D models, where the forward models did not include displacement currents and only lower frequencies were considered. An inversion code for RMT data was developed and applied to RMT data with azimuthal electrical anisotropy signature collected over a limestone formation. The results indicated that RMT is a faster and more reliable technique for studying electrical anisotropy than are azimuthal resistivity surveys. A new sequential inversion method to estimate hydraulic conductivity fields using crosshole GPR and tracer test data was applied to 2D synthetic examples. Given careful surveying, the results indicated that regularization of hydrogeological inverse problems using geophysical tomograms might improve models of hydraulic conductivity. A method to regularize geophysical inverse problems using geostatistical models was developed and applied to crosshole ERT and GPR data collected in unsaturated sandstone. The resulting models were geologically more reasonable than models where the regularization was based on traditional smoothness constraints. Electromagnetic geophysical techniques provide an inexpensive data source in estimating qualitative hydrogeological models, but hydrogeological data must be incorporated to make quantitative estimation of hydrogeological systems feasible.
796

Einfluss der Bodenalbedo und Bodenreflektivität von urbanen Oberflächen auf die Ableitung der optischen Dicke von Aerosolpartikeln aus Satellitenmessungen

Mey, Britta 02 May 2013 (has links) (PDF)
Diese Dissertation ist innerhalb eines Teilprojekts des Schwerpunktprogramms SPP1233 ”Megacities Megachallenge - Informal Dynamics of Global Change“ entstanden. Thema der vorliegenden Arbeit ist die Untersuchung der heterogenen Reflexion der Sonnenstrahlung an urbanen Bodenoberflächen, sowie deren Einfluss auf die Bestimmung der optischen Dicke von Aerosolpartikeln aus Satellitendaten. Zu diesem Zweck wurden flugzeuggetragene Messungen der spektral aufgelösten, reflektierten solaren Strahlung durchgeführt. In dieser Arbeit werden Messungen mit dem SMART-Albedometer (Spectral Modular Airborne Radiation measurement sysTem) präsentiert, die im Rahmen zweier Messkampagnen in Leipzig im September 2007 und in Zhongshan, China im Dezember 2009 erfasst wurden. Die spektrale Bodenreflektivität und Bodenalbedo wurden aus den spektralen Messungen der aufwärtsgerichteten Stahldichte (Radianz) und Strahlungsflussdichte (Irradianz) bestimmt. Dazu wurden eindimensionale Strahlungsübertragungsrechnungen durchgeführt. Der Einfluss der Flughöhe auf die Bodenreflektivität und Bodenalbedo wird anhand eines Messbeispiels, sowie einer Modellstudie mit ein- und dreidimensionalen Strahlungsübertragungsrechnungen diskutiert. Für beide Untersuchungsgebiete, Leipzig und Zhongshan, wird die Heterogenität der Reflexion solarer Strahlung an urbanen Oberflächen gezeigt. Der Einfluss der im operationellen Aerosolalgorithmus des satellitengetragenen Instrumentes MODIS (MODerate resolution Imaging Spectroradiometer) getroffenen Annahmen zur Bodenreflektivität auf die optische Dicke von Aerosolpartikeln, wurde mittels der gemessenen spektralen Bodenreflektivität und einer auf Strahlungsübertragungsrechnungen basierenden Modellstudie quantifiziert. Ein linearer Zusammenhang zwischen Bodenreflektivität und optischer Dicke von Aerosolpartikeln wird für beide Fallbeispiele gezeigt. Mittels der Messungen in Zhongshan kann bestätigt werden, dass die Bodenreflektivität für urbane Oberflächen im Aerosolalgorithmus unterschätzt wird. Im Rahmen der Modellstudie wird die Sensitivität des Aerosolalgorithmus auf die programminternen Annahmen zur Bodenreflektivität quantifiziert.
797

Effect of subglacial shear on geomechanical properties of glaciated soils

Huang, Bing Quan 09 June 2005
Continental glaciers covered as much as thirty percent of the present-day inhabited earth during the Quaternary period. Traditionally, one-dimensional consolidation has been considered as the main process of formation for the soils deposited during glaciation. One of the outcomes of accepting one-dimensional consolidation as the main process of formation is that the geomechanical properties of soil in a horizontal plane are isotropic (known as cross-anisotropy). Recent measurements of subglacial pore pressure and preconsolidation pressure profile have indicated that this might not be the case. The role of subglacial shear action has probably been long neglected. The main objective of this research is to investigate the effects of subglacial shearing on the geomechanical properties of glaciated soils. <p> Recent research has found evidence of horizontal property anisotropy associated with the direction of the ice-sheet movement. A testing program was thus proposed to explore the relationship between the anisotropy of property and the direction of past glacier movement. The program involves several fundamental engineering parameters of soils. These parameters together with the corresponding test methods are as follows: (i) Conventional oedometer test yield stress anisotropy; (ii) Oedometer test with lateral stress measurement stiffness anisotropy; (iii) Load cell pressuremeter (LCPM) test in situ stress anisotropy. <p> The physical meaning of yield stress determined by conventional oedometer tests was interpreted as the critical state of structural collapse. The literature review and an experimental study on kaolin samples with a known stress history suggested that yield stress possesses certain dependency on the sampling direction. The anisotropy of yield stress for Battleford till from Birsay, Saskatchewan was also explored by testing directional oedometer samples. In addition, the anisotropy of stiffness was also investigated using a newly developed lateral stress oedometer that is capable of independent measurement of horizontal stresses at three different points with angles of 120 degrees. Preliminary evidence of a correlation between the direction of maximum stiffness in a horizontal plane and the known direction of glacial shear was observed. The correlation between the direction of maximum yield stress and known direction of glaciation was rather poor. Anisotropy of in situ stresses was investigated by conducting LCPM tests in Pot clay in the Netherlands. Based on the LCPM test results, it was concluded that the evidence of a correlation between the anisotropy of in situ stress and known direction of glacial advance is still rather obscure. <p> Although both the laboratory studies and field studies cannot sufficiently confirm the existence of lateral anisotropy of geomechanical properties and its relationship to the direction of the Quaternary ice-sheet movement, the effects of subglacial shearing should not be neglected in assessing the geotechnical properties of glaciated soils. In practice, it is usually found that the preconsolidation pressure profile does not follow the gravitational line as predicted by the one-dimensional consolidation theory and its magnitude is not compatible with the measured effective pressure values at the base of the glacier. It has been suggested that changes in seepage gradient (upward or downward) are responsible for the deviation of preconsolidation pressure profile away from the gravitational line. In this thesis, a new glacial process model consolidation coupled shearing was proposed. This model is based on the framework of traditional soil mechanics (critical state theory, Modified Cam-clay model and one-dimensional consolidation theory) and is consistent with the general geological and glaciological evidences. This model may provide an alternative explanation for the preconsolidation pressure patterns generally observed in practice. It can also be combined with groundwater flow characteristics to explain the diversity of the preconsolidation consolidation patterns. The proposed model was used successfully to obtain the preconsolidation pressure profile observed in Battleford till at Birsay and the subglacial shear-softening phenomenon.
798

A non-linear coupled model for the analysis of reinforced concrete sections under bending, shear, torsion and axial forces

Bairán García, Jesús Miguel 15 December 2005 (has links)
La mayoría de las estructuras de hormigón armado se someten a solicitaciones combinadas de esfuerzos axiles, flexión, cortante y torsión. La fisuración del hormigón, plastificación de las armaduras y otros efectos no-lineales hacen que las secciones transversales de estos elementos presenten un comportamiento anisótropo que deriva en el acoplamiento de los esfuerzos normales y tangenciales. Es decir, esfuerzos normales o momentos flectores pueden producir deformaciones de corte y vice versa. Aunque en algunas ocaciones, esta interacción es considerada de forma simplificada en el dimensionamiento de estructuras, hasta el momento no se ha realizado un análisis profundo de los efectos acoplados en secciones de forma arbitraria bajo cargas 3D generales utilizando modelos de fibras.El objetivo principal de esta tesis es generalizar el análisis de secciones de hormigón armado mediante fibras, de forma que se pueda reproducir la res-puesta no-lineal acoplada frente a esfuerzos normales y tangenciales bajo solicitaciones tridimensionales generales. De igual forma, se pretende obtener, para los esfuerzos cortantes y torsión, la misma capacidad de representación de geometrías y combinación de materiales que ofrecen los modelos de fibras para esfuerzos de flexo-compresión.La primera problemática estriba en representar adecuadamente la cinemática de la sección transversal. Con la excepción de las deformaciones normales contenidas en el plano de la sección, no existe una teoría cinemática que a priori pueda dar la distribución del resto de deformaciones o tensiones en la sección, sin dejar de satisfacer las condiciones de equilibrio interno o continuidad entre las fibras que componen la misma.Por otra parte, para materiales anisótropos, como el hormigón fisurado, en general todos los esfuerzos internos pueden estar acoplados. Además, es preciso considerar la distorsión de la sección transversal para satisfacer el equilibrio entre fibras.El problema se aborda de forma general, considerando una sección de forma y materiales cualesquiera. Se parte del problema diferencial de equilibrio de un sólido con el que se ha podido deducir un sistema de equilibrio entre fibras (equilibrio a nivel sección). Se puede demostrar que éste es complementario al problema estándar de vigas. El sistema complementario permite recuperar información tridimensional que normalmente se pierde al resolver un problema de vigas.Posteriormente, se propone una solución interna del problema complementario, en la que el alabeo y la distorsión de la sección quedan expresados como una función de las deformaciones generalizadas de una viga: deformaciones axil y cortantes, curvaturas de flexión y torsión. No son necesarios grados de libertad adicionales a nivel estructura ni hipótesis a-priori sobre la forma de los campos de deformación o tensión interna.A partir de la formulación teórica, se desarrolla un modelo de elementos finitos plano de la sección transversal. El modelo está preparado para servir como respuesta constitutiva de cualquier tipo de elemento viga en sus puntos de integración. %Se evita así la necesidad de realizar un modelo de elementos sólidos de toda la barra para estudiar la respuesta frente a una combinación general de esfuerzos normales y tangenciales.Se implementan una serie de modelos constitutivos para distintos materiales. En particular, se implementa un modelo constitutivo triaxial para hormigón fisurado, considerando la anisotropía inducida por la fisuración e incluyendo la superficie de rotura según un criterio multiaxial.La formulación seccional es validada mediante varios casos de estudio teóricos y experimentales. La respuesta no-lineal acoplada bajo diversas combinaciones de esfuerzos normales y tangenciales es reproducida con precisión, lo cual queda patente tanto en las curvas esfuerzo-deformación obtenidas como en las matrices de rigidez seccionales.Finalmente, se recopilan las conclusiones derivadas de la presente investigación y seofren recomendaciones para futuros trabajos. / Most RC structures are subjected to combined normal and tangential forces, such as bending, axial load, shear and torsion. Concrete cracking, steel yielding and other material nonlinearities produce an anisotropic sectional response that results in a coupling between the effects of normal and shear forces, i.e. normal force or bending moments may produce shear strains and vice versa. Although this interaction is sometimes taken into account, in a simplified manner, in the design of RC structures, a deep analysis of the coupling effects of RC sections using fiber models has not yet been made for arbitrary shape sections under general 3D loading.The main objective of this thesis is to generalize the fiber-like sectional analysis of reinforced concrete elements, to make it capable of considering the coupled non-linear response under tangential and normal internal forces, from a general 3D loading.Similarly, it is desired to obtain, for torque and shear forces, the same capacity and versatility in reproducing complex geometry and materials combination that fiber-like sectional representations offers for bending and stretching.The first problematic lies in finding a proper representation of the section's kinematics under such general loading. Except for in-plane normal strains, there is no single kinematical theory capable of a-priori representing the correct distribution of the others strains or stresses satisfying, at the same time, inter-fiber equilibrium and continuity. On the other hand, for rather anisotropic materials, such as cracked concrete, all internal forces are, in general, coupled. It is also required that distortion is allowed for the section's kinematics in order to guarantee satisfaction of internal equilibrium.The problem is dealt in a general form considering arbitrary shaped sections and any material behaviour. Starting from the differential equilibrium of a solid, an inter-fiber equilibrium system (equilibrium at the sectional level) was deduced. This system, which is complementary to the standard equilibrium problem of a beam-column, allows to recuperate information of the three-dimensional problem that is generally lost when solving a beam problem.Further, a solution of the equilibrium at the sectional level is proposed in which the section's warping and distortion are posed as a function of the generalized beam-column strains (axial and shear strains, bending and torsion curvatures). No additional degrees of freedom are required at the structural level nor a-priori hypotheses on the distribution of the internal strains or stresses.After the theoretical formulation, a planar finite element model for cross-sectional analysis is developed. The model can be used as a constitutive law for general beam column elements at their integration points.A series of constitutive models have been implemented for several materials. In particular, a triaxial constitutive model for cracked concrete is implemented considering crackinduced anisotropy and a multiaxial failure criterion.The sectional formulation is validated by means of various theoretical and experimental case studies. Non-linear coupled response under normal and tangential internal forces is reproduced with accuracy, as can be seen both in the predicted internal force-strain curves and in the sectional stiffness matrixes.Finally, the conclusions drawn from the current research are summarized andrecomendations for future works are given.
799

Growth and characterization of advanced layered thin film structures : Amorphous SmCo thin film alloys

Roos, Andreas January 2012 (has links)
This report describes the growth and characterization of thin amorphous samarium-cobalt alloy films. The samarium-cobalt alloy was grown by DC magnetron sputtering in the presence of an external magnetic field parallel to the thin film. The external magnetic field induces a uniaxial in-plane magnetic anisotropy in the samarium-cobalt alloy. The thin films were characterized with x-ray scattering, and the magnetic anisotropy was characterized with the magneto optic Kerr effect. The measurements showed a uniaxial in-plane magnetic anisotropy in the samarium-cobalt alloy films. It is not clear how amorphous the samples really are, but there are indications of crystalline and amorphous areas in the alloys.
800

Effect of subglacial shear on geomechanical properties of glaciated soils

Huang, Bing Quan 09 June 2005 (has links)
Continental glaciers covered as much as thirty percent of the present-day inhabited earth during the Quaternary period. Traditionally, one-dimensional consolidation has been considered as the main process of formation for the soils deposited during glaciation. One of the outcomes of accepting one-dimensional consolidation as the main process of formation is that the geomechanical properties of soil in a horizontal plane are isotropic (known as cross-anisotropy). Recent measurements of subglacial pore pressure and preconsolidation pressure profile have indicated that this might not be the case. The role of subglacial shear action has probably been long neglected. The main objective of this research is to investigate the effects of subglacial shearing on the geomechanical properties of glaciated soils. <p> Recent research has found evidence of horizontal property anisotropy associated with the direction of the ice-sheet movement. A testing program was thus proposed to explore the relationship between the anisotropy of property and the direction of past glacier movement. The program involves several fundamental engineering parameters of soils. These parameters together with the corresponding test methods are as follows: (i) Conventional oedometer test yield stress anisotropy; (ii) Oedometer test with lateral stress measurement stiffness anisotropy; (iii) Load cell pressuremeter (LCPM) test in situ stress anisotropy. <p> The physical meaning of yield stress determined by conventional oedometer tests was interpreted as the critical state of structural collapse. The literature review and an experimental study on kaolin samples with a known stress history suggested that yield stress possesses certain dependency on the sampling direction. The anisotropy of yield stress for Battleford till from Birsay, Saskatchewan was also explored by testing directional oedometer samples. In addition, the anisotropy of stiffness was also investigated using a newly developed lateral stress oedometer that is capable of independent measurement of horizontal stresses at three different points with angles of 120 degrees. Preliminary evidence of a correlation between the direction of maximum stiffness in a horizontal plane and the known direction of glacial shear was observed. The correlation between the direction of maximum yield stress and known direction of glaciation was rather poor. Anisotropy of in situ stresses was investigated by conducting LCPM tests in Pot clay in the Netherlands. Based on the LCPM test results, it was concluded that the evidence of a correlation between the anisotropy of in situ stress and known direction of glacial advance is still rather obscure. <p> Although both the laboratory studies and field studies cannot sufficiently confirm the existence of lateral anisotropy of geomechanical properties and its relationship to the direction of the Quaternary ice-sheet movement, the effects of subglacial shearing should not be neglected in assessing the geotechnical properties of glaciated soils. In practice, it is usually found that the preconsolidation pressure profile does not follow the gravitational line as predicted by the one-dimensional consolidation theory and its magnitude is not compatible with the measured effective pressure values at the base of the glacier. It has been suggested that changes in seepage gradient (upward or downward) are responsible for the deviation of preconsolidation pressure profile away from the gravitational line. In this thesis, a new glacial process model consolidation coupled shearing was proposed. This model is based on the framework of traditional soil mechanics (critical state theory, Modified Cam-clay model and one-dimensional consolidation theory) and is consistent with the general geological and glaciological evidences. This model may provide an alternative explanation for the preconsolidation pressure patterns generally observed in practice. It can also be combined with groundwater flow characteristics to explain the diversity of the preconsolidation consolidation patterns. The proposed model was used successfully to obtain the preconsolidation pressure profile observed in Battleford till at Birsay and the subglacial shear-softening phenomenon.

Page generated in 0.04 seconds