• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 64
  • 20
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 247
  • 247
  • 57
  • 54
  • 33
  • 31
  • 23
  • 22
  • 22
  • 21
  • 20
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Aspects of the Innate Immune System in the Caribbean Octocoral Swiftia exserta

Menzel, Lorenzo P. 12 November 2013 (has links)
The immune systems of cnidaria are important to study for two reasons: to gain a better understanding of the evolution of immune responses, and to provide a basis to partially redress the precipitous world-wide die-offs of reef corals, some of which have been attributed to diseases and stress. Many immune responses share ancient evolutionary origins and are common across many taxa. Using Swiftia exserta, an azooxanthellate ahermatypic local octocoral, as a proxy model organism to study aspects of innate immunity in corals and cnidaria allows us to address both of the reasons listed above while not using endangered species. Utilizing a coral that does not contain symbiotic dinoflagellates (zooxanthellae) simplifies the system by restricting the source of proteins to a single genome. The lack of zooxanthellae in Swiftia exserta also allows the animal’s simple adaptation to lab settings. This study of the innate immune system of an octocoral demonstrates: 1) a novel understanding of the microanatomy of octocoral tissues; 2) that Swiftia exserta has at least two cell types that function as constitutive immunocytes; and 3) the presence of two potent antibacterial peptides, one with a mass between 4694 and 4696 Daltons. My report on the microanatomy of the coenenchyme, the tissue between polyps, advances the understanding of octocoral anatomy by systematically comparing histology sections with electron micrographs. Applying various techniques of enzyme histochemistry, coupled with cryo-preservation, to the coenenchyme I have identified at least two populations of constitutive immunocytes in Swiftia exserta. Two antibacterial proteins are identified by protein purification and antimicrobial testing techniques. The more active protein is partially characterized with modern hyphenated mass-spectrometry techniques, and can be the focus of future study.
212

L'étude des antimicrobiens comme modulateurs du système de sécrétion de type VI de vibrio cholerae

Cros, Candice 07 1900 (has links)
No description available.
213

Impacto de peptídeos biologicamente ativos no empacotamento lipídico de membranas modelo /

Miasaki, Kenneth Massaharu da Fonseca January 2020 (has links)
Orientador: João Ruggiero Neto / Resumo: Os peptídeos sintéticos L1A (IDGLKAIWKKVADLLKNT-NH2, Q = +3e) e seu análogo acetilado (acL1A, Q = +2e) utilizados neste estudo foram projetados para que tenham características estruturais semelhantes ao peptídeo Polybia-MP1 extraído do veneno da vespa Polybia paulista, em que um dos dois resíduos ácidos ocupa a segunda posição na região Nterminal, e resíduos básicos são terceiros e/ou quartos vizinhos dos resíduos ácidos. Esses peptídeos possuem significativa atividade bactericida seletiva para bactérias Gram-negativas, especialmente Escherichia coli, sem serem hemolíticos. Estudos anteriores, em sistemas modelo, demonstraram que a acetilação do N-terminal resultou no aumento da atividade lítica em vesículas aniônicas (8POPC/2POPG) em comparação com o L1A, o que sugeriu perturbação do empacotamento lipídico de modo mais eficaz para o análogo que é menos carregado. Considerando que a membrana plasmática de bactérias Gram-negativas contém majoritariamente fosfatidiletanolamina (PE) e fosfatidilglicerol (PG), o presente trabalho propôs investigar o impacto dos peptídeos L1A e acL1A em membranas modelo compostas por 3POPE/1DOPG utilizando uma variedade de técnicas experimentais. Os resultados demonstraram que ambos os peptídeos induziram segregação lipídica, sendo o análogo acetilado mais eficiente em recrutar PG e segregar PE. / Abstract: The synthetic peptides L1A (IDGLKAIWKKVADLLKNT-NH2, Q = +3e) and its acetylated analog (acL1A, Q = +2e) used in this study were designed to have some structural features similar to the peptide Polybia-MP1 extracted from the venom of the wasp Polybia paulista, in which one of the acidic residues occupies the second position on the N-terminus region and basic residues are third and/or fourth neighbors of the acidic residues. These peptides display significant bactericidal activity against Gram-negative bacteria, especially Escherichia coli, being non-hemolytic. Previous work performed in model membrane systems has shown that the N-terminal acetylation led to an increase on the lytic activity in anionic vesicles (8POPC/2POPG) compared with L1A, suggesting that the less charged peptide has higher ability to perturb the lipid-packing. Considering that the Gram-negative cell membranes contain mainly phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), the present work proposed to investigate the impact of L1A and acL1A on model membranes composed of 3POPE/1DOPG using a variety of experimental techniques. The results suggested that both peptides induced lipid segregation being the acetylated analog more efficient in recruiting PG and segregating PE. / Mestre
214

Studium účinku antimikrobiálních peptidů na Saccharomyces cerevisiae a další druhy kvasinek / The effect of antimicrobial peptides on Saccharomyces cerevisiae and other yeast species

Makarova, Anna-Marie January 2018 (has links)
The increased use of antibiotics, antifungal agents and disinfectants in the last decades has resulted in development of microbial resistance to these drugs. Candida species are the fourth most common cause of hospital-acquired bloodstream infection and kill 40% of those patients. Natural antimicrobial peptides are promising candidates for the development of new agents to treat yeast and bacterial infections, as their presumed mechanism of action differs significantly from the mechanism of action of current drugs. This work is focused on several peptides isolated from the venom of wild bees and their synthetic analogues and the identification of the most effective ones against non-pathogenic Saccharomyces cerevisiae and several pathogenic Candida species. Antifungal activity of eight cationic antimicrobial peptides was tested and compared under various conditions. The overall susceptibility of pathogenic yeast species to currently used antifungal drugs and the antimicrobial peptides was screened with the aim to identify potential synergistic and species-specific effects. The effect of antimicrobial peptides on membrane potential was measured by a fluorescent probe (diS-C3(3)), and the relative hyperpolarization of plasma membrane was shown for each peptide. The effect of antimicrobial peptides on...
215

Antibiotic Independent Approaches to Control Salmonella and Campylobacter in Poultry

Closs, Gary, Jr. January 2021 (has links)
No description available.
216

Identification and validation of putative therapeutic and diagnostic antimicrobial peptides against HIV: An in silico approach

Tincho, Marius Belmondo January 2013 (has links)
>Magister Scientiae - MSc / Background: Despite the effort of scientific research on HIV therapies and to reduce the rate of HIV infection, AIDS still remains one of the major causes of death in the world and mostly in Sub-Saharan Africa. To date, neither a cure, nor an HIV vaccine had been found and the disease can only be managed by using High Active Antiretroviral Therapy (HAART) if detected early. The need for an effective early diagnostic and non-toxic therapeutic treatment has brought about the necessity for the discovery of additional HIV diagnostic methods and treatment regimens to lower mortality rates. Antimicrobial Peptides (AMPs) are components of the first line of defence of prokaryotes and eukaryotes and have been proven to be promising therapeutic agents against HIV. Methods: With the utility of computational biology, this work proposes the use of profile search methods combined with structural modelling to identify putative AMPs with diagnostic and anti-HIV activity. Firstly, experimentally validated anti-HIV AMPs were retrieved from various publicly available AMP databases, APD, CAMP, Bactibase and UniprotKB and classified according to super-families. Hidden Markov Model (HMMER) and Gap Local Alignment of Motifs (GLAM2) profiles were built for each super-family of anti- HIV AMPs. Putative anti-HIV AMPs were identified after scanning genome sequence databases using the trained models, retrieved AMPs and ranked based on their E-values. The 3-D structures of the 10 peptides that were ranked highest were predicted using 1-TASSER. These peptides were docked against various HIV proteins using PatchDock and putative AMPs showing highest affinity and having the correct orientation to the HIV -1 proteins gp 120 and p24 were selected for future work so as to establish their function in HIV therapy and diagnosis. Results: The results of the in silica analysis showed that the constructed models using the HMMER algorithm had better performances compare to that of the models built by the GLAM2 algorithm. Furthermore, the former tool has better statistical and probability explanation compared to the latter tool. Thus only the HMMER scanning results were considered for further study. Out of 1059 species scanned by the HMMER models, 30 putative anti-HIV AMPs were identified from genome scans with the family specific profile models after elimination of duplicate peptides. Docking analysis of putative AMPs against HIV proteins showed that from the 10 best performing anti-HIV AMPs with the highest Escores, molecules 1,3, 8 and 10 firmly binds the gp120 binding pocket at the VIN2 domain and at the point of interaction between gp120 and T cells, with the 1st and 3rd highest scoring anti-HIV AMPs having the highest binding affinities. However, all 10 putative anti-HIV AMPs bind to the N-terminal domain of p24 with large surface interaction, rather than the C-terminal. Conclusion: The in silica approach has made it possible to construct computational models having high performances, and which enabled the identification of putative anti-HIV peptides from genome sequence scans. The in silica validation of these putative peptides through docking studies has shown that some of these AMPs may be involved in HIV/AIDS therapeutics and diagnostics. The molecular validation of these findings will be the way forward for the development of an early diagnostic tool and as a consequence initiate early treatment. This will prevent the invasion of the immune system by blocking the VIN2 domain and thus designing of a successful vaccine with broad neutralizing activity against this domain.
217

Signaling Mechanisms Behind the Benefits of Sleep

Sinner, Marina Patricia 31 January 2023 (has links)
Hintergrund: Schlaf ist ein streng regulierter Zustand körperlicher Ruhe und reduzierten Bewusstseins, der evolutionär im ganzen Tierreich konserviert ist. Schlafmangel ist in der modernen Gesellschaft weit verbreitet und betrifft 10 – 30 % der Erwachsenen. Dies stellt ein ernstes gesundheitliches Problem dar, da Schlafmangel mit vielen Krankheiten assoziiert ist, darunter Depressionen, Krebs und Herz-Kreislauf-Erkrankungen. Umgekehrt beeinflussen auch Krankheiten und das Immunsystem das Schlafverhalten. Trotz der fundamentalen Rolle dieser Wechselbeziehung sind grundlegende molekulare Mechanismen, die Funktionen des Immunsystems und Schlafkontrolle verbinden, bisher kaum verstanden. Da die Schlafregulation in Säugetieren sehr komplex ist, ist es sinnvoll konservierte Mechanismen zuerst in einfacheren Modellorganismen zu untersuchen. Der Rundwurm C. elegans ist ein solcher etablierter, simpler und vielseitiger Modellorganismus für die Schlafforschung. Er schläft sowohl im Rhythmus seiner Larvenentwicklung immer jeweils während des Lethargus kurz vor der Häutung, als auch nach besonderem Stress, wie zum Beispiel Hunger oder Hitze. C. elegans besitzt ein invariantes Nervensystem, in dem eine rapide Depolarisation des einzelnen RIS-Interneurons genügt, um Schlaf zu induzieren. Eine Mutation des AP2 Transkriptionsfaktors APTF-1 verhindert die Expression von FLP-11, dem schlafinduzierenden Neuropeptid von RIS. Dies führt praktisch zu völliger Schlaflosigkeit, die in C. elegans in der Regel nicht tödlich ist, und deshalb ein nützliches Modell für genetisch-chronischen Schlafmangel darstellt. Unser Labor fand heraus, dass eine Gain-of-function-Mutation in der Kollagenase NAS-38 über Signalwege der angeborenen Immunität und RIS-Aktivierung zu vermehrtem Schlaf während des Lethargus führt. Gleichzeitig wird dabei die Expression einer ganzen Familie antimikrobieller Peptide (AMP) hochreguliert. Derselbe Signalweg, einschließlich der AMP, sowie das Schlafverhalten werden auch durch Verletzungen induziert. Interessanterweise sterben nicht-schlafende Würmer nach einer Verletzung häufiger. Insgesamt deutet dies darauf hin, dass AMP als Signalmoleküle fungieren könnten, die Schlaf als Teil einer globalen Schutzreaktion vom peripheren Gewebe zum Nervensystem signalisieren. Für diese Hypothese fehlten bisher jedoch die Beweise. Fragestellungen und Hypothesen: Mein Ziel war es, den molekularen Mechanismus zu entschlüsseln, durch den verschiedene Reize der angeborenen Immunität, das heißt NAS-38 sowie epidermale Verletzungen, Schlaf induzieren. Zwei Fragen habe ich hierbei im Speziellen adressiert: Welche Domänen des NAS 38-Proteins sind an der Schlafregulation beteiligt? Da die Astacin-Domäne als aktive Proteasedomäne von NAS-38 angesehen wird, erwartete ich eine Schlüsselrolle dieser Domäne auch in der Schlafinduktion. Zweitens, welche Rolle spielen AMP bei der Signalisierung von immunitätsinduziertem Schlaf? Da gezeigt wurde, dass AMP während des NAS-38 Schlafes und auch nach Verwundung hochreguliert sind, erwartete ich, dass AMP an der Signalisierung von Schlaf von der Epidermis zum Nervensystem beteiligt sind. In einem zweiten Schritt untersuchte ich die molekularen Mechanismen, die den Vorteilen von Schlaf für das Überleben von Verletzungen zugrunde liegen. Auch hier habe ich speziell zwei Fragestellungen untersucht: Verändert genetischer Schlafentzug die transkriptionelle Reaktion auf epidermale Verletzungen? Da Schlaf für viele fundamentale Prozesse wichtig ist und Schlaflosigkeit die Sterblichkeit nach Verletzungen erhöht, vermutete ich, dass genetischer Schlafentzug die transkriptionelle Reaktion auf Verletzungen beeinträchtigt. Zweitens, ist Schlaf wichtig für die Entwicklung von Robustheit, um im Falle einer Verletzung weniger Schaden zu nehmen? Während der Larvenentwicklung fällt die Cuticula-Synthese mit Schlaf zeitlich zusammen. Daher stellte ich die Hypothese auf, dass Schlafentzug die korrekte Bildung einer Cuticula beeinträchtigt. Methoden: Zur Analyse der Signalmechanismen, durch die sowohl NAS-38 als auch Verletzungen Schlaf induzieren, filmte ich das Schlafverhalten von C. elegans mittels Langzeit-Bildgebung in Agarose-Mikrokammern. So führte ich eine Struktur-Funktions-Analyse mit verschiedenen nas-38 Mutanten durch, in denen jeweils eine andere NAS-38 Domäne deletiert war. Darüber hinaus testete ich verschiedene Suppressoren für immunvermittelten Schlaf, der durch NAS 38 oder Verletzungen induziert war. Die Redundanz des Suppressionseffektes der verschiedenen Mitglieder der AMP-Familie auf immunvermittelten Schlaf testete ich, indem ich den Suppressionsphänotyp einer CRISPR/Cas9-editierten Multi-Knockout-Mutante analysierte, in der insgesamt 19 AMP deletiert waren. Um Effektoren zu identifizieren, die den AMP nachgeschaltet sind, induzierte ich Schlaf durch Überexpression des AMP NLP 29 unter der Kontrolle eines Hitzeschock-Promotors und analysierte die Sschlafsuppression durch verschiedene Knockout-Mutanten. Im zweiten Projekt beschäftigte ich mich mit der Frage, wie genau Schlaf das Überleben nach Verletzungen unterstützt. Ich verglich die Expression von literaturbekannten Reportern für verschiedene Aspekte der Verwundungsreaktion mittels Langzeit-Fluoreszenzmikroskopie im Wildtyp sowie dem Modell für chronisch-genetischen Schlafmangel. Darüber hinaus habe ich die Transkriptome zwischen jeweils adulten verwundeten und unverwundeten Wildtypen und schlaflosen Mutanten verglichen. Um die Struktur der Cuticula des Wildtyps und der schlaflosen Mutante zu vergleichen, analysierte ich außerdem rasterelektronen-mikroskopische Aufnahmen. Ergebnisse: Im ersten Projekt konnte ich zeigen, dass NAS-38 Schlaf durch seine Astacin-Domäne verlängert. Dieser Prozess wird moderiert durch die TSP-1-Domäne. Weiterhin konnte ich zeigen, dass viele AMP redundant wirken um immunvermittelten Schlaf, verursacht durch NAS-38 oder Verletzungen, zu signalisieren. Ich konnte zeigen, dass das AMP NLP-29 über den Neuropeptidrezeptor NPR-12 wirkt. Dieser kann NLP-29-induzierten Schlaf vermitteln, wenn er in einem neuronalen Netzwerk exprimiert wird, welches nachweislich RIS aktiviert. Interessanterweise fand ich außerdem heraus, dass für NLP-29-vermittelten Schlaf der EGFR Signalweg notwendig ist. Im zweiten Projekt entdeckte ich, dass Schlaflosigkeit die transkriptionelle Reaktion auf Verletzungen nicht dramatisch verändert. Allerdings ist das Transkriptionsprofil bereits in der unverletzten schlaflosen Mutante verändert. Dies betraf unter anderem eine Gruppe oszillierender Gene, die Cuticula-assoziierte Proteine codieren, und deren Expression normalerweise ihren Höhepunkt gegen Ende des Lethargus erreicht. Da angenommen wird, dass der Zeitpunkt der Kollagenexpression entscheidend für eine fehlerfreie Cuticula-Bildung ist, analysierte ich die Cuticula der schlaflosen Mutante. Ich konnte zeigen, dass die Cuticula des adulten Tieres tatsächlich einen strukturellen Defekt aufweist. Dieser betrifft speziell Furchen in der Region nahe den Alae und könnte möglicherweise die Strapazierfähigkeit der Cuticula gegenüber bestimmten Belastungen verringern. Daher könnte Schlaf erforderlich sein, Robustheit in Form einer strukturierten Cuticula zu fördern. Schlussfolgerungen: In diesem Dissertationsprojekt vollendete ich die Charakterisierung eines neuentdeckten Mechanismus in C. elegans, durch den Verwundungen Schlaf als Teil der Immunantwort aus der Peripherie zum Nervensystem signalisieren. Ich konnte zeigen, dass AMP gewebeübergreifend Signale von der Epidermis an ein neuronales Netz vermitteln, welches wiederum RIS aktiviert und dadurch Schlaf induziert. Da Komponenten dieses Signalweges konserviert sind, könnten AMP auch in anderen Tieren, einschließlich des Menschen, Schlaf zur Genesung fördern. Darüber hinaus habe ich die Grundlagen für die Analyse molekularer Mechanismen geschaffen, die den essentiellen Funktionen des Schlafes für Heilung und Überleben zugrunde liegen. Obwohl Schlaflosigkeit die transkriptionelle Reaktion auf Verletzungen nicht drastisch zu verändern scheint, deuten meine Ergebnisse auf eine Rolle des Schlafes bei der richtigen Cuticula-Bildung und möglicherweise sogar auf eine vielfältigere Rolle bei der zeitlichen Regulierung der Genexpression hin.:Summary I Zusammenfassung IV Contents VII List of Figures XII List of Tables XIV Abbreviations XV 1. Introduction 1 1.1. Sleep is fascinating 1 1.1.1. The origin and basic features of sleep 1 1.1.2. Regulation of sleep in higher animals 3 1.1.2.1. Neuronal control of sleep 3 1.1.2.2. Molecular control of sleep 5 1.1.3. The functions of sleep 6 1.2. The immune system and its relationship to sleep 7 1.3. Wound healing and its relationship to sleep 10 1.4. Caenorhabditis elegans is a well-studied model organism 12 1.4.1. Sleep in C. elegans 15 1.4.2. The C. elegans cuticle 18 1.4.3. Immunity in C. elegans 19 1.4.4. Wound healing response in C. elegans 22 2. Previous results 25 2.1. A strong gain-of-function mutation in the astacin metallo-proteinase NAS 38 increases lethargus duration and movement quiescence in C. elegans 25 2.2. NAS-38 increases sleep mostly through the RIS neuron 25 2.3. NAS-38 is expressed in the epidermis and oscillates with the developmental rhythm 25 2.4. nas-38(ok3407) acts via innate immunity pathways to increase lethargus duration and AMP expression 27 2.5. Overexpression of AMPs induces RIS dependent quiescence 30 2.6. Epidermal wounding induces RIS-dependent sleep, which is beneficial for survival 31 3. Thesis Aims 34 3.1. Aim 1 – Characterizing the molecular mechanism through which NAS-38, innate immunity, and wounding induce sleep 34 3.2. Aim 2 – Analyzing how sleep promotes survival after wounding 35 4. Materials and Methods 36 4.1. C. elegans maintenance 36 4.2. C. elegans crossing and genotyping 41 4.3. Creation of transgenic animals 45 4.3.1. Creating the npr-12 rescue in nmr-1 expressing neurons 45 4.3.2. Microparticle bombardment 45 4.3.3. CRISPR/Cas9 system 46 4.4. Synchronizing worm cultures by hypochlorite treatment 48 4.5. Imaging 49 4.5.1. Imaging setups 49 4.5.2. DIC Imaging of worm development, lethargus, and sleep behavior 50 4.5.2.1. Imaging of heterozygous mutants 50 4.5.3. DIC imaging in the temperature control device 51 4.5.4. Fluorescent imaging experiments 51 4.5.4.1. nas-38p::d1GFP and nlp-29p::GFP during L1 development 51 4.5.4.2. nlp-29p::GFP in L4 larvae 52 4.5.4.3. nlp-29p::GFP after heat shock-induced lin-3 overexpression 52 4.5.4.4. Imaging fluorescent markers in (wounded) young adults 52 4.5.4.5. Functional Ca2+ imaging in young adults 52 4.5.4.6. Fluorescence imaging across the whole developmental time 54 4.5.4.7. Nuclear decompaction assays 55 4.5.4.8. Transcription factor localization with spinning disc confocal microscopy 55 4.5.4.9. Imaging DPY-13::mKate2 in young adults 56 4.6. Image analysis 56 4.6.1. Assessment of developmental time and lethargus detection 56 4.6.2. Sleep detection in DIC mode 56 4.6.3. Analyzing functional Ca2+ images 57 4.6.4. Fluorescent reporter analysis during long-term imaging 57 4.7. RNAi-by-feeding 58 4.8. Transcriptome analysis 59 4.8.1. Analysis of the nas-38(ok3407) transcriptome 59 4.8.2. Analysis of the wounding transcriptome 59 4.9. Epidermal wounding 62 4.9.1. Laser wounding 62 4.9.2. Needle wounding 62 4.9.3. Survival assay 63 4.10. Scanning Electron Microscopy (SEM) 63 4.11. Histamine-inducible hyperpolarization of RIS 64 4.12. Cuticle integrity test with Sodium hypochlorite 64 4.13. NPR-12 receptor modeling 64 4.14. Quantification and statistical analysis 65 5. Results 66 5.1. Aim 1 – Characterizing the pathway through which NAS 38, wounding and innate immunity induce sleep 66 5.1.1. The loss of function mutation nas-38(tm2655) shows the opposite phenotype to the gain of function mutation nas-38(ok3407) 66 5.1.2. nas-38 gain-of-function mutants act through their astacin protease domain and are semi-dominant 66 5.1.3. Transcriptome analysis of nas-38(ok3407) reveals upregulation of genes associated with secretion, innate immunity and cuticle formation 69 5.1.4. nas-38(knu568) increased movement quiescence can be suppressed by mutations of innate immunity pathways 72 5.1.5. Multiple NLPs and CNCs act in parallel to mediate nas-38(ok3407) induced sleep 75 5.1.6. Wounding-induced sleep requires RIS, ALA, EGFR and immune signaling 77 5.1.7. NLP-29 signals via the NPR-12 receptor in neurons upstream of RIS 80 5.1.8. NLP-29 requires neuronal EGFR signaling to induce sleep 81 5.1.9. Simple in silico models suggest that many different NLPs can bind to NPR-12 83 5.1.10. AMPs contribute to the survival after wounding 85 5.2. Aim 2 – Identifying the advantages sleep provides that help to survive harmful conditions 87 5.2.1. Wounding decreases the lifespan in the wild type and the aptf 1(gk794) mutant 87 5.2.2. Histamine-inducible RIS hyperpolarization suppresses wounding sleep 87 5.2.3. Genetic sleep deprivation decreases translocation of DAF-16 into the nucleus immediately after wounding 89 5.2.4. Genetic sleep deprivation hardly changes the transcriptional wounding response 95 5.2.5. Genetic sleep deprivation and wounding increase nuclear PHA 4 101 5.2.6. Oscillating genes and genes associated with the cuticle and the unfolded protein response are upregulated in young adult aptf 1(gk794) mutants 106 5.2.7. Genetic sleep deprivation leads to a malformation of cuticular furrows 109 5.2.8. Genetic sleep deprivation leads to an increased transcription of lethargus specific oscillating genes in young adults 114 5.2.9. Genetic sleep deprivation does not significantly affect development time or body size 120 5.2.10. Expression of fluorescent reporters of oscillating genes is not phase-shifted in the aptf-1(gk794) mutant 122 6. Discussion and Outlook 128 6.1. NAS-38 acts through its astacin domain to increase sleep via innate immunity pathways 128 6.2. NAS-38 during larval lethargus and epidermal wounding in the adult signal sleep via many AMPs as part of a peripheral immune response 130 6.3. Epidermal AMPs activate a neuronal circuit to induce sleep 131 6.4. Genetically sleep deprived worms can mount a proper wounding response in many ways, except for DAF-16/FOXO regulation 132 6.5. Genetic sleep deprivation alters cuticle formation 135 6.6. The role of PHA-4/FOXA in genetically sleep-deprived animals 137 6.7. Conclusion 139 7. References 140 8. Acknowledgements 163 9. Appendix 166 9.1. Standard reagents 166 9.2. Sequence summary of PHX3754 167 9.3. MATLAB script to analyze the intensity of fluorescent reporters over time 171 9.4. Permissions to reprint figures 174 9.5. Experimental author contributions 175 9.6. Predicted interactions between the NPR-12 receptor and peptides of the nlp and cnc families 176 9.7. Overlap of the adult wounding transcriptome with other data sets 179 9.8. Curriculum Vitae – Marina Patricia Sinner 181 / Background: Sleep is a tightly regulated state of behavioral quiescence and reduced consciousness, which is conserved throughout the animal kingdom. In modern societies 10 – 30 % of the adult population suffer from insufficient sleep, which poses a serious health problem as sleep deprivation is associated with a variety of diseases including depression, cancer, and cardiovascular diseases. Conversely, sickness and the immune system also influence sleep patterns. Despite the important role of this interrelationship between sleep and immunity, basic molecular mechanisms that link both vital functions are only poorly understood yet. As sleep regulation is complex in mammals and is thus difficult to address experimentally, it is reasonable to investigate its basic conserved mechanisms in simpler models first. The nematode C. elegans is such a well-established, simple, and powerful model organism for sleep research. It displays stress-induced sleep, for example upon starvation or heat shock, but also developmentally-timed sleep during lethargus prior to each larval molt. C. elegans possesses an invariant nervous system in which rapid depolarization of the single RIS interneuron is sufficient to induce sleep. Mutation of the AP2 transcription factor APTF 1 deprives RIS of its sleep-inducing neuropeptide FLP-11 and thus virtually abolishes sleep. This is not per se lethal in C. elegans, thereby presenting a powerful model for genetic sleep deprivation. Our lab found that a gain-of-function mutation in the collagenase NAS-38 strongly increases RIS-dependent sleep during lethargus with a concomitant upregulation of a large family of antimicrobial peptides (AMPs) via immunity pathways. Epidermal wounding also triggers AMP expression via immune signaling and induces sleep in the adult worm. Moreover, genetic sleep deprivation increases mortality upon epidermal injury. Together, this suggests AMPs to act as somnogens from peripheral tissues to the nervous system as part of a protective response. This hypothesis, however, was hitherto lacking final evidence and pathway components. Research questions and hypotheses: I aimed to characterize the molecular mechanism by which separate triggers of innate immunity, i. e. NAS-38 and wounding, induce sleep. I specifically addressed two questions: Firstly, which domains of the NAS-38 protein are involved in sleep regulation? As the astacin domain is predicted to be the active protease domain of NAS-38, I expected a role for it also in sleep induction by NAS-38. Secondly, what is the role of AMPs in signaling immunity-induced sleep? As they have been shown to be upregulated during times of increased sleep in the nas-38 mutant and after wounding, I expected AMPs to be involved in signaling sleep from the epidermis to the nervous system. In a second step, I investigated the molecular mechanisms underlying the benefits of sleep for surviving injury. Again, I addressed two questions: Firstly, does genetic sleep deprivation alter the transcriptional wounding response? As sleep has a role in many fundamental processes and sleeplessness increases mortality upon wounding, I hypothesized that genetic sleep deprivation impairs wounding-induced changes of transcriptional activity. Secondly, does sleep help building robustness before encountering injury? During larval development the synthesis of a new cuticle coincides with sleep. Thus, I hypothesized that genetic sleep deprivation impairs proper cuticle formation. Methods: To dissect the signaling mechanisms by which NAS-38 and wounding induced sleep, I followed sleep behavior of C. elegans by long-term imaging in agarose microchambers. I performed a structure-function analysis with different nas-38 mutants, each carrying a deletion of a different domain. Moreover, I screened for suppressors of sleep induced by NAS 38 or wounding. To test for redundancy of the AMP family, I investigated the suppression-phenotype of a CRISPR/Cas9 edited multi-knockout mutant lacking 19 AMPs. To identify downstream effectors of the AMP NLP 29, I induced sleep by overexpressing NLP 29 from a heat-shock promoter and analyzed the suppression-phenotype of different knockout mutants. For the second project, I addressed the question how sleep aids recovery from injury. I followed fluorescent reporters of previously described wounding response pathways by fluorescent long-term imaging in wild-type and genetically sleep-deprived animals. Moreover, I compared the transcriptomes of adult wild-type and genetically sleep-deprived worms both wounded and unwounded. To investigate the structure of the cuticle, I analyzed scanning electron microscopy images. Results: In the first project, I could show that NAS-38 indeed increases sleep via its astacin domain in a process that is modulated by the TSP-1 domain. Moreover, I could show that many AMPs act redundantly in mediating immunity-induced sleep downstream of NAS-38 and after wounding. I demonstrated that the AMP NLP-29 signals sleep via the neuropeptide receptor NPR 12. This receptor can mediate sleep when it is specifically expressed in command interneurons of a circuit that has been shown to activate RIS. Interestingly, I also found that EGFR signaling is required to mediate NLP-29-induced sleep. In the second project, I found that sleeplessness does not dramatically alter the transcriptional wounding response. However, I could show that transcription is altered already in the unwounded non-sleeping mutant. This affects, among others, a specific subset of oscillating collagen-coding genes, whose expression usually peaks around the end of lethargus. As the timing of expression of collagens is thought to be highly important for proper cuticle formation, I characterized the cuticle of the aptf-1(gk794) mutant. I could show that young adult aptf 1(gk794) worms indeed have a structural defect affecting cuticular furrows in the region adjacent to the alae, which could potentially decrease specific aspects of resilience of the cuticle. Thus, sleep might be required to build robustness in the form of a properly structured cuticle. Conclusion: In this PhD project, I completed the characterization of a novel mechanism by which wounding signals sleep from the periphery to the nervous system as part of the immune response in C. elegans. I could show that AMPs act as cross-tissue signals from the epidermis to a neuronal RIS-controlling circuit that ultimately leads to sleep induction. As components of this molecular pathway are highly conserved, AMPs might also induce sleep to promote recovery from injury in other organisms, including humans. Moreover, I laid the foundations for dissecting the molecular mechanisms behind the functions of sleep for healing and survival. Even though the disability to sleep did not seem to drastically change the transcriptional response to wounding, my results indicate a role for sleep in proper cuticle formation in C. elegans and potentially even a broader role in the regulation of precise gene expression timing.:Summary I Zusammenfassung IV Contents VII List of Figures XII List of Tables XIV Abbreviations XV 1. Introduction 1 1.1. Sleep is fascinating 1 1.1.1. The origin and basic features of sleep 1 1.1.2. Regulation of sleep in higher animals 3 1.1.2.1. Neuronal control of sleep 3 1.1.2.2. Molecular control of sleep 5 1.1.3. The functions of sleep 6 1.2. The immune system and its relationship to sleep 7 1.3. Wound healing and its relationship to sleep 10 1.4. Caenorhabditis elegans is a well-studied model organism 12 1.4.1. Sleep in C. elegans 15 1.4.2. The C. elegans cuticle 18 1.4.3. Immunity in C. elegans 19 1.4.4. Wound healing response in C. elegans 22 2. Previous results 25 2.1. A strong gain-of-function mutation in the astacin metallo-proteinase NAS 38 increases lethargus duration and movement quiescence in C. elegans 25 2.2. NAS-38 increases sleep mostly through the RIS neuron 25 2.3. NAS-38 is expressed in the epidermis and oscillates with the developmental rhythm 25 2.4. nas-38(ok3407) acts via innate immunity pathways to increase lethargus duration and AMP expression 27 2.5. Overexpression of AMPs induces RIS dependent quiescence 30 2.6. Epidermal wounding induces RIS-dependent sleep, which is beneficial for survival 31 3. Thesis Aims 34 3.1. Aim 1 – Characterizing the molecular mechanism through which NAS-38, innate immunity, and wounding induce sleep 34 3.2. Aim 2 – Analyzing how sleep promotes survival after wounding 35 4. Materials and Methods 36 4.1. C. elegans maintenance 36 4.2. C. elegans crossing and genotyping 41 4.3. Creation of transgenic animals 45 4.3.1. Creating the npr-12 rescue in nmr-1 expressing neurons 45 4.3.2. Microparticle bombardment 45 4.3.3. CRISPR/Cas9 system 46 4.4. Synchronizing worm cultures by hypochlorite treatment 48 4.5. Imaging 49 4.5.1. Imaging setups 49 4.5.2. DIC Imaging of worm development, lethargus, and sleep behavior 50 4.5.2.1. Imaging of heterozygous mutants 50 4.5.3. DIC imaging in the temperature control device 51 4.5.4. Fluorescent imaging experiments 51 4.5.4.1. nas-38p::d1GFP and nlp-29p::GFP during L1 development 51 4.5.4.2. nlp-29p::GFP in L4 larvae 52 4.5.4.3. nlp-29p::GFP after heat shock-induced lin-3 overexpression 52 4.5.4.4. Imaging fluorescent markers in (wounded) young adults 52 4.5.4.5. Functional Ca2+ imaging in young adults 52 4.5.4.6. Fluorescence imaging across the whole developmental time 54 4.5.4.7. Nuclear decompaction assays 55 4.5.4.8. Transcription factor localization with spinning disc confocal microscopy 55 4.5.4.9. Imaging DPY-13::mKate2 in young adults 56 4.6. Image analysis 56 4.6.1. Assessment of developmental time and lethargus detection 56 4.6.2. Sleep detection in DIC mode 56 4.6.3. Analyzing functional Ca2+ images 57 4.6.4. Fluorescent reporter analysis during long-term imaging 57 4.7. RNAi-by-feeding 58 4.8. Transcriptome analysis 59 4.8.1. Analysis of the nas-38(ok3407) transcriptome 59 4.8.2. Analysis of the wounding transcriptome 59 4.9. Epidermal wounding 62 4.9.1. Laser wounding 62 4.9.2. Needle wounding 62 4.9.3. Survival assay 63 4.10. Scanning Electron Microscopy (SEM) 63 4.11. Histamine-inducible hyperpolarization of RIS 64 4.12. Cuticle integrity test with Sodium hypochlorite 64 4.13. NPR-12 receptor modeling 64 4.14. Quantification and statistical analysis 65 5. Results 66 5.1. Aim 1 – Characterizing the pathway through which NAS 38, wounding and innate immunity induce sleep 66 5.1.1. The loss of function mutation nas-38(tm2655) shows the opposite phenotype to the gain of function mutation nas-38(ok3407) 66 5.1.2. nas-38 gain-of-function mutants act through their astacin protease domain and are semi-dominant 66 5.1.3. Transcriptome analysis of nas-38(ok3407) reveals upregulation of genes associated with secretion, innate immunity and cuticle formation 69 5.1.4. nas-38(knu568) increased movement quiescence can be suppressed by mutations of innate immunity pathways 72 5.1.5. Multiple NLPs and CNCs act in parallel to mediate nas-38(ok3407) induced sleep 75 5.1.6. Wounding-induced sleep requires RIS, ALA, EGFR and immune signaling 77 5.1.7. NLP-29 signals via the NPR-12 receptor in neurons upstream of RIS 80 5.1.8. NLP-29 requires neuronal EGFR signaling to induce sleep 81 5.1.9. Simple in silico models suggest that many different NLPs can bind to NPR-12 83 5.1.10. AMPs contribute to the survival after wounding 85 5.2. Aim 2 – Identifying the advantages sleep provides that help to survive harmful conditions 87 5.2.1. Wounding decreases the lifespan in the wild type and the aptf 1(gk794) mutant 87 5.2.2. Histamine-inducible RIS hyperpolarization suppresses wounding sleep 87 5.2.3. Genetic sleep deprivation decreases translocation of DAF-16 into the nucleus immediately after wounding 89 5.2.4. Genetic sleep deprivation hardly changes the transcriptional wounding response 95 5.2.5. Genetic sleep deprivation and wounding increase nuclear PHA 4 101 5.2.6. Oscillating genes and genes associated with the cuticle and the unfolded protein response are upregulated in young adult aptf 1(gk794) mutants 106 5.2.7. Genetic sleep deprivation leads to a malformation of cuticular furrows 109 5.2.8. Genetic sleep deprivation leads to an increased transcription of lethargus specific oscillating genes in young adults 114 5.2.9. Genetic sleep deprivation does not significantly affect development time or body size 120 5.2.10. Expression of fluorescent reporters of oscillating genes is not phase-shifted in the aptf-1(gk794) mutant 122 6. Discussion and Outlook 128 6.1. NAS-38 acts through its astacin domain to increase sleep via innate immunity pathways 128 6.2. NAS-38 during larval lethargus and epidermal wounding in the adult signal sleep via many AMPs as part of a peripheral immune response 130 6.3. Epidermal AMPs activate a neuronal circuit to induce sleep 131 6.4. Genetically sleep deprived worms can mount a proper wounding response in many ways, except for DAF-16/FOXO regulation 132 6.5. Genetic sleep deprivation alters cuticle formation 135 6.6. The role of PHA-4/FOXA in genetically sleep-deprived animals 137 6.7. Conclusion 139 7. References 140 8. Acknowledgements 163 9. Appendix 166 9.1. Standard reagents 166 9.2. Sequence summary of PHX3754 167 9.3. MATLAB script to analyze the intensity of fluorescent reporters over time 171 9.4. Permissions to reprint figures 174 9.5. Experimental author contributions 175 9.6. Predicted interactions between the NPR-12 receptor and peptides of the nlp and cnc families 176 9.7. Overlap of the adult wounding transcriptome with other data sets 179 9.8. Curriculum Vitae – Marina Patricia Sinner 181
218

Antibacterial and Antifungal Activity of Ceragenins, Mimics of Endogenous Antimicrobial Peptides

Mohammadihashemi, Marjan 01 April 2019 (has links)
The continuous emergence of drug-resistance pathogens is a global concern. As a result, substantial effort is being expended to develop new therapeutics and mechanisms for controlling microbial growth to avoid entering a "post-antibiotic" era in which commonly used antibiotics are no longer effective in treating infections. In this work, we investigate the efficacy and application of ceragenins as non-peptide mimics of antimicrobial peptides (AMPs). First, this work examines the susceptibility of drug-resistant Gram-negative bacteria. The susceptibility of colistin-resistant clinical isolates of Klebsiella pneumoniae to ceragenins and AMPs suggests that there is little to no cross-resistance between colistin and ceragenins/AMPs. Furthermore, Lipid A modifications are found in bacteria with modest changes in susceptibility to ceragenins and with high levels of resistance to colistin. Next, we investigated the potential for cross resistance between chlorhexidine, colistin, AMPs and ceragenins as repeated exposure of bacteria to chlorhexidine might result in cross resistance with colistin, AMPs or ceragenins. Furthermore, a proteomics study on the chlorhexidine-resistant strains showed that chlorhexidine resistance is associated with upregulation of proteins involved in the assembly of LPS for outer membrane biogenesis and virulence factors in Pseudomonas aeruginosa.Second, this dissertation describes the antifungal activity of ceragenins against an emerging multidrug-resistant fungus, Candida auris. We found that lead ceragenins displayed activities comparable to known antifungal agents against C. auris isolates. We also found that fungal cell morphology was altered in response to ceragenin treatment, that ceragenins exhibited activity against sessile organisms in biofilms, and that gel and cream formulations including CSA-44 and CSA-131 resulted in a significant log reduction against established fungal infections in ex vivo mucosal tissues. Finally, a hydrogel film containing CSA-131 was generated on endotracheal tubes (ETTs). ETTs provide an abiotic surface on which bacteria and fungi form biofilms that cause serious infections. In this study, the eluting ceragenin prevented fungal and bacterial colonization of coated ETTs for extended periods while uncoated tubes were colonized by bacteria and fungi. Coated tubes were well tolerated in intubated pigs. The ability of ceragenins to eradicate established biofilms make them attractive potential therapeutics for persistent infections in the lung, including those associated with cystic fibrosis. In ex vivo studies, we initially found that this ceragenin, at concentrations necessary to eradicate established biofilms, also causes loss of cilia function. However, by formulating CSA-131 in poloxamer micelles, cilia damage was eliminated and antimicrobial activity was unaffected. These findings suggest that CSA-131, formulated in micelles, may act as a potential therapeutic for polymicrobial and biofilm-related infections in the lung and trachea.
219

Caractérisation de l'impact de la polymyxine B sur les biofilms de Vibrio cholerae

Pauzé Foixet, Julien 06 1900 (has links)
Vibrio cholerae, l’agent étiologique du choléra, est une bactérie adaptée à l’environnement aquatique et, dans le cadre infectieux, à la colonisation du petit intestin humain. L’environnement intestinal est un milieu a priori hostile aux bactéries externes, à cause de son environnement anaérobie et de la présence des effecteurs du système immunitaire. Capable de produire un biofilm dans ces deux niches écologiques, V. cholerae est capable de persister dans des conditions défavorables et de résister aux molécules antimicrobiennes, y compris les peptides antimicrobiens (PAM). J’ai d’abord étudié la résistance aux antimicrobiens de V. cholerae dans des conditions expérimentales représentatives de l’intestin. Ensuite, j’ai caractérisé, quantitativement et qualitativement, la résistance à la polymyxine B (PmB) des biofilms de V. cholerae, exposés à des concentrations sous-inhibitrices ou létales de ce PAM. Nos résultats suggèrent que la résistance aux PAM de V. cholerae est influencée par la disponibilité de l’oxygène dans le milieu. Je propose également que des concentrations létales de PmB peuvent stimuler un mécanisme de résistance exclusif aux biofilms matures. Les différences soulevées par nos investigations mettent en perspective l’importance d’adapter les conditions expérimentales aux caractéristiques réelles de l’environnement infectieux lors des études de résistances aux antimicrobiens. / Vibrio cholerae, the etiological agent of cholera, is a bacterium that is adapted to the aquatic environment and, in the infectious setting, to the colonization of the small intestine. The intestinal environment is at first glance hostile to external bacteria, due to its anaerobic conditions and the presence of the effectors of the immune system. Capable of producing a biofilm in its two ecological niches, V. cholerae is quite capable of persisting in unfavorable conditions and of resisting antimicrobial molecules, including antimicrobial peptides (AMPs). I first investigated the antimicrobial resistance of V. cholerae under experimental conditions representative of the intestine. Then, I characterized, quantitatively and qualitatively, the antimicrobial resistance of V. cholerae biofilms to Polymyxin B (PmB), at sub-inhibitory or lethal concentrations of this AMP. Our results suggest that resistance to PmB in V. cholerae is influenced by oxygen availability in the medium. I also propose that lethal concentrations of PmB may promote a resistance mechanism exclusive to mature biofilms. The differences raised by our investigations put into perspective the importance of adapting laboratory conditions to the actual features of the infectious environment when investigating antimicrobial resistance.
220

Application and Development of Ceragenins in Medical Device Coatings for Clinical Settings

Sherren, Elliot E. 21 June 2024 (has links) (PDF)
Hospital-acquired infections (HAIs) pose a significant and increasing threat to global health. One primary cause of this threat is increasing antibiotic resistance. As traditional antibiotics continue to grow less effective, there is an urgent need for novel antimicrobial strategies. This work explores the potential of ceragenins, also known as cationic steroid antimicrobials (CSAs), as a promising alternative to combat HAIs. Specifically, we investigated potential roles that CSAs can play in the context of multiple medical device coatings in healthcare settings. Ceragenins are synthetic mimic of antimicrobial peptides (AMPs) which exhibit broad-spectrum antimicrobial activity against many common pathogens that have been cited as high priority by global health organizations. Unlike traditional antibiotics, which rely on specificity to bacterial enzymes or processes, ceragenins disrupt microbial membranes generally. This mechanism of action allows ceragenins to bypass many of the related antibiotic resistance mutations of bacteria and fungi. As microbial membranes are a highly conserved and fundamental structure of these pathogens, it is much more difficult for microbes to develop mutations that prevent CSA binding. Additionally, ceragenins are resistant to both host and pathogenic proteolytic degradation and are cost-effective to produce, which place CSAs as an attractive alternative to traditional antibiotics. This research investigates the integration of ceragenins into various medical devices to prevent HAIs. Specifically, we investigated silicone tissue expanders, peripherally inserted central catheter (PICC) lines, and adhesive devices which include both polyacrylate and silicone scar tape. These studies include the development of coating techniques to maximize appropriate antimicrobial activity while maintaining stability and biocompatibility across these different base materials. Our experimental results demonstrate that ceragenin-coated devices significantly reduce microbial colonization and biofilm formation. We considered the length of antimicrobial activity needed and developed coatings that would be appropriate for those use cases. This reduction in harmful pathogenic colonization demonstrates their potential to improve patient outcomes and reduce healthcare costs associated with HAIs. Further research and development could facilitate the continued adoption of ceragenin-based coatings in medical devices, which can reduce the incidence of HAIs while contributing to the broader fight against antibiotic-resistant infections worldwide.

Page generated in 0.0334 seconds