• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 156
  • 113
  • 47
  • 19
  • 16
  • 11
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 719
  • 719
  • 145
  • 115
  • 114
  • 108
  • 107
  • 101
  • 98
  • 86
  • 84
  • 83
  • 82
  • 78
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

A Computational Study On Nitrotriazine Derivatives

Camur, Yakup 01 February 2008 (has links) (PDF)
In this study, all possible mono, di and trinitro-substituted triazine compounds as potential candidates for high energy density materials (HEDMs) have been investigated by using quantum chemical treatment. Computational chemistry is a valuable tool for estimating the potential candidates for high energy density materials. Geometric features and electronic structures of these nitro-substituted triazines have been systematically studied using ab initio and density functional theory (DFT, B3LYP) at the level of 6-31G(d,p), 6-31+G(d,p), 6-311G(d,p), 6-311+G(d,p), cc-pVDZ. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that 2G derivative with the predicted densities of 1.9 g/cm3, detonation velocities of 9.43 km/s, and detonation pressures of 40.68 GPa may be novel potential candidates of high energy density materials (HEDMs). Moreover, thermal stabilities were investigated by calculating bond dissociation energies (BDE) at B3LYP/6-311G(d,p) level. Detailed molecular orbital (MO) investigation have been performed on these potential HEDMs.
292

An Ab Initio Surface Study Of Feti For Hydrogen Storage Applications

Izanlou, Afshin 01 September 2009 (has links) (PDF)
In this study, the effect of surface crystallography on hydrogen molecule adsorption properties on FeTi surfaces is presented. Furthermore, the substitutional adsorption of 3d-transition metals on (001), (110) and (111) surfaces of FeTi is studied. Using ab initio pseudopotential methods, the adsorption energies of hydrogen and 3d-transition metals are calculated. In substitutional adsorption of 3d-transition metals, Fe-terminated (111) and Ti-terminated (001) surfaces, are found to express the lowest adsorption energies. The adsorption energy versus adsorbed elements&rsquo / curves are very alike for all the surfaces. According to this, going from the left to right of periodic table, the adsorption energies increase first. The maximum energy belongs to Cr, Mn and Fe for all the surfaces. Then a minimum is observed in Co for all the surfaces and after that the energy increases again. Adsorption energies of atomic and molecular hydrogen are calculated on high symmetry sites of surfaces. As a result, top and bridge sites came out to be the most stable positions for molecular and atomic hydrogen adsorption, respectively, for (001) and (111) surfaces in all terminations. In (110) surface / however, 3-fold (Ti-Ti)L-Fe and 3-fold (Ti-Ti)S-Fe hollow sites express the lowest adsorption energies for molecular and atomic hydrogen, respectively. Considering the minimum adsorption energy sites for hydrogen molecule and atom, a path of dissociation of hydrogen molecule on surfaces is represented. After that by fully relaxing the hydrogen molecule on the surface and using CI-NEB method the activation energy for hydrogen dissociation is calculated. So it has been found that on Fe-terminated (111) and FeTi (110) surfaces the dissociation of hydrogen molecule happens without activation energy. Meanwhile, the activation energy for Fe-terminated (001) surface and Ti-terminated (001) surface, is calculated to be 0.178 and 0.190 eV, respectively.
293

Photochemistry of aromatic hydrocarbons: implications for ozone and secondary organic aerosol formation

Suh, Inseon 16 August 2006 (has links)
Aromatic hydrocarbons constitute an important fraction (~20%) of total volatile organic compounds (VOCs) in the urban atmosphere. A better understanding of the aromatic oxidation and its association in urban and regional ozone and organic aerosol formation is essential to assess the urban air pollution. This dissertation consists of two parts: (1) theoretical investigation of the toluene oxidation initiated by OH radical using quantum chemical and kinetic calculations to understand the mechanism of O3 and SOA precursors and (2) experimental investigation of atmospheric new particle formation from aromatic acids. Density functional theory (DFT) and ab initio multiconfigurational calculations have been performed to investigate the OH-toluene reaction. The branching ratios of OH addition to ortho, para, meta, and ipso positions are predicted to be 0.52, 0.34, 0.11, and 0.03, respectively, significantly different from a recent theoretical study of the same reaction system. Aromatic peroxy radicals arising from initial OH and subsequent O2 additions to the toluene ring are shown to cyclize to form bicyclic radicals rather than undergoing reaction with NO under atmospheric conditions.Isomerization of bicyclic radicals to more stable epoxide radicals possesses significantly higher barriers and hence has slower rates than O2 addition to form bicyclic peroxy radicals. At each OH attachment site, only one isomeric pathway via the bicyclic peroxy radical is accessible to lead to ring cleavage. Decomposition of the bicyclic alkoxy radicals leads primarily to formation of glyoxal and methyl glyoxal along with other dicarbonyl compounds. Atmospheric aerosols often contain a considerable fraction of organic matter, but the role of organic compounds in new nanometer-sized particle formation is highly uncertain. Laboratory experiments show that nucleation of sulfuric acid is considerably enhanced in the presence of aromatic acids. Theoretical calculations identify the formation of an unusually stable aromatic acid-sulfuric acid complex, which likely leads to a reduced nucleation barrier. The results imply that the interaction between organic and sulfuric acids promotes efficient formation of organic and sulfate aerosols in the polluted atmosphere because of emissions from burning of fossil fuels, which strongly impact human health and global climate.
294

Electrical contact material arc erosion: experiments and modeling towards the design of an AgCdO substitute

Pons, Frédéric 06 April 2010 (has links)
AgCdO is one of the most widely used contact materials in the world because of its outstanding performance. Nevertheless, due to environmental considerations, it will soon be completely forbidden by European environmental directives. Therefore, finding a good substitute is of crucial importance. Electrical arc erosion plays a crucial role in the reliability and life of power switching devices. Depending on the contact material's behavior in response to an electrical arc, surface damage can induce severe changes in contact material properties that will impact the power switching device's functioning. Consequently, electrical arc effects and consequences on the contact material surface are of first importance. In this context, we have focused our research activities on the following axes. First of all, in order to better understand AgCdO (Current contact material in aerospace industry) and AgSnO₂(Potential candidate to AgCdO substitution) arc erosion behaviors, arc erosion experiments, where the power switching devices have been subjected to different numbers of arc discharges, have been realized. Further, a general macroscopic electrical contact arc erosion model valid for low and high currents was developed. To compare model results to experimental data, this model describes the complete breaking process of electrical contacts and gives the total amount of material removed after one breaking operation. In parallel, arc erosion experiments on AgCdO power switching devices have been conducted at high currents (0 -> 1000 A) in order to validate the arc erosion model. Next, using the general arc erosion model, the properties having the greatest influence on the electrical arc erosion process have been determined through simulations on silver contact material. At this stage, ab initio calculations were needed to obtain ranges of variation of certain silver contact material properties. Finally, an investigation of the trends of changing local contact material on these identified material properties was performed. This study composition of AgSnO₂was based on ab initio calculations for two different oxide compositions of AgSnO₂. These will allow us to give directions to aid the design of a good substitute for AgCdO, and therefore, to complete the main objective of this research work.
295

Correlated ground state ab initio studies of polymers

Abdurahman, Ayjamal 19 December 2000 (has links) (PDF)
In this thesis we have investigated the correlated ground state properties of polymers by applying wave-function-based ab-initio quantum-chemical methods such as the Hartree-Fock approach, the full configuration interaction method (FCI), coupled-cluster (CC) and Moller-Plesset second-order perturbation (MP2) theory. The polymers we have studied are the boron-nitrogen polymers, i.e., polyiminoborane (PIB) and polyaminoborane (PAB), the lithium hydride chain and the beryllium hydride polymer as well as the polymethineimine (PMI). The optimized structural parameters, cohesive energies, polymerization ernergies, relative stabilities of isomeric forms and some band structure results are presented. The results demonstrated that quantum chemical ab initio methods can be applied successfully to infinite systems like polymers, although such calculations are still far from being routine.
296

Etude de l'effet de la radiolyse de l'eau sur la livixation de la zirconolite

Tribet, Magaly 10 September 2007 (has links) (PDF)
La zirconolite est une des matrices envisagées pour le confinement des actinides mineurs dans le cadre du stockage des déchets en site géologique profond. Cependant, dans ces conditions, après plusieurs milliers d'années, l'eau peut arriver au contact du colis de déchets et être radiolysée lors de la désintégration des radionucléides. Au cours de cette thèse, nous avons donc étudié les effets de la radiolyse de l'eau, induite par des particules chargées (alphas ou protons), selon deux géométries, sur la livixation d'une zirconoloite synthétique, de formule Ca0,8Nd0,2ZrTi1,8Al0,2O7, où Nd simule la présence des actinides mineurs. Les irradiations externes ont été réalisées sur des zirconolites saines et amorphisées, dans l'eau pure ou en présence d'ions complexants. La dissolution de l'échantillon a été évaluée via le relâchement des cations constitutifs. La production de H2O2 radiolytique a également été mesurée. Le comportement du matériau a été évalué par calculs ab initio.
297

Étude ab initio de la structure électronique des composés d'oxyde de cuivre incommensurables Sr(14-x)Ca(x)Cu(24)O(41).

Gellé, Alain 20 December 2004 (has links) (PDF)
Ce travail comporte deux partie, l'une de développement méthodologique, l'autre concerne l'étude ab-initio, par une méthode de spectroscopie de fragments immergés dans un bain, des composés Sr(14-x)Ca(x)Cu(24)O(41).<br /><br />Le travail méthodologique propose une généralisation et systématisation du calcul du potentiel de Madelung ainsi qu'une simplification de la méthode de calcul ab-initio permettant un gain de ressources sans perte de précision.<br /><br />L'étude des composés Sr(14-x)Ca(x)Cu(24)O(41) (x=0 et x=13.6) montre l'influence des modulations structurales incommensurables des deux sous-systèmes (chaînes et échelles de spins) sur la physique de basse énergie des composés (dimérisation, ordre anti-ferromagnétique). Des modèles t-J+V ont été déterminés à partir des calculs ab-initio en fonction des paramètre incommensurables.
298

Structure et réactivité d'ylures de triazolium applications à la synthèse des dérivés isoindoliques /

Surpateanu, Georgiana. Vergoten, Gérard. January 2000 (has links) (PDF)
Thèse doctorat : Instrumentation et analyses avancées : Lille 1 : 2000. / Résumé en français et en anglais. Bibliogr. p. 173-189.
299

Diffusion thermique et sous irradiation du chlore dans le dioxyde d'uranium

Pipon, Yves Moncoffre, Nathalie. Toulhoat, Nelly January 2006 (has links) (PDF)
Reprodution de : Thèse de doctorat : Physique des matériaux : Lyon 1 : 2006. / Titre provenant de l'écran titre. 138 réf. bibliogr.
300

Materials design via tunable properties

Pozun, Zachary David 06 July 2012 (has links)
In the design of novel materials, tunable properties are parameters such as composition or structure that may be adjusted in order to enhance a desired chemical or material property. Trends in tunable properties can be accurately predicted using computational and combinatorial chemistry tools in order to optimize a desired property. I present a study of tunable properties in materials and employ a variety of algorithms that ranges from simple screening to machine learning. In the case of tuning a nanocomposite membrane for olefin/paraffin separations, I demonstrate a rational design approach based on statistical modeling followed by ab initio modeling of the interaction of olefins with various nanoparticles. My simplified model of gases diffusing on a heterogeneous lattice identifies the conditions necessary for optimal selectivity of olefins over paraffins. The ab initio modeling is then applied to identify realistic nanomaterials that will produce such conditions. The second case, [alpha]-Fe₂O₃, commonly known as hematite, is potential solar cell material. I demonstrate the use of a screened search through chemical compound space in order to identify doped hematite-based materials with an ideal band gap for maximum solar absorption. The electronic structure of hematite is poorly treated by standard density functional theory and requires the application of Hartree-Fock exchange in order to reproduce the experimental band gap. Using this approach, several potential solar cell materials are identified based on the behavior of the dopants within the overall hematite structure. The final aspect of this work is a new method for identifying low-energy chemical processes in condensed phase materials. The gap between timescales that are attainable with standard molecular dynamics and the processes that evolve on a human timescale presents a challenge for modeling the behavior of materials. This problem is particularly severe in the case of condensed phase systems where the reaction mechanisms may be highly complicated or completely unknown. I demonstrate the use of support vector machines, a machine-learning technique, to create transition state theory dividing surfaces without a priori information about the reaction coordinate. This method can be applied to modeling the stability of novel materials. / text

Page generated in 0.0347 seconds