• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude fonctionnelle du métabolisme de l’acétyl-CoA chez Trypanosoma brucei / Functional study of acetyl-CoA metabolism in Trypanosoma brucei

Millerioux, Yoann 16 December 2013 (has links)
Trypanosoma brucei, parasite protozoaire flagellé appartenant à l’ordre des kinétoplastidés, est responsable de la maladie du sommeil, ou trypanosomiase humaine africaine (THA). Son cycle de vie fait intervenir un insecte vecteur hématophage (la mouche tsé-tsé ou glossine) qui lors d’un repas sanguin sur un individu infecté ingère des parasites. Après plusieurs étapes de différentiation, les parasites sont injectés à un hôte lors d’un autre repas sanguin. Nous avons étudié le métabolisme intermédiaire et énergétique de la forme procyclique de T. brucei, forme présente dans l’appareil digestif de l’insecte vecteur. Chez ce parasite, la dégradation du glucose aboutit à la production d’acétate dans l’unique mitochondrie, et de succinate dans la mitochondrie et les glycosomes, organelles spécifiques des trypanosomatidés dans lesquels la glycolyse est compartimentalisée. T. brucei utilise une "navette acétate" permettant de transférer l’acétyl-CoA produit dans la mitochondrie vers le cytosol pour initier la biosynthèse de novo des acides gras et la production d’acétate est essentielle à la croissance du parasite. La navette acétate fait intervenir dans la mitochondrie l’acétate:succinate CoA-transférase (ASCT), qui converti l'acétyl-CoA produit à partir du glucose en acétate. Nous avons identifié et caractérisé une autre enzyme mitochondriale contribuant aussi à la production d’acétate à partir du glucose : l’acétyl-CoA thioesterase (ACH). Le double mutant n’exprimant ni l’ACH ni l’ASCT ne produit plus d’acétate et n’est plus viable, confirmant le rôle essentiel de la production d’acétate. Par ailleurs, nous avons montré que l’ASCT, grâce au cycle formé avec la succinyl-CoA synthétase (SCoAS), contribue à la production d’ATP par phosphorylation au niveau du substrat dans la mitochondrie, mais l’ACH n’est pas impliqué dans la production d’ATP. La thréonine est l’acide aminé le plus rapidement consommé par le parasite et sa dégradation aboutit à la production d’acétate et de glycine. En utilisant des outils de génétique inverse et des analyses métaboliques par RMN du proton et HPTLC, nous avons caractérisé la première étape enzymatique de cette voie, catalysée par la thréonine déshydrogénase (TDH), et nous avons montré que la thréonine est la principale source de carbone pour la production d’acétate, pour la biosynthèse de novo des acides gras et des stérols. L’acétyl-CoA est produit dans la mitochondrie à partir du pyruvate provenant de la dégradation du glucose par le complexe pyruvate déshydrogénase (PDH) et à partir de la thréonine dont la dégradation est initiée par la TDH. L’acétyl-CoA provenant de la dégradation du glucose ou de la thréonine est converti en acétate par les mêmes enzymes, l’ACH et l’ASCT. Nous avons montré que la voie de dégradation de la thréonine est sous régulation métabolique. L’activité et l’expression de la TDH ainsi que la production d’acétate à partir de la thréonine sont diminuées dans le mutant knock out de la phosphoenolpyruvate carboxykinase (PEPCK) dans lequel le flux glycolytique est redirigé vers la production d’acétate. De plus, contrairement au glucose, la dégradation de la thréonine ne participe pas à la production d’ATP dans la mitochondrie du parasite. Nos résultats nous amène à l’hypothèse d’un channeling mitochondrial des voies de dégradation du pyruvate et de la thréonine pour la production d’acétate. Les trypanosomes ont développé une voie de biosynthèse de novo des acides gras faisant appel aux élongases du réticulum endoplasmique et un précurseur inhabituel, le butyryl-CoA dont la voie de biosynthèse n’est à l’heure actuelle pas connue chez les trypanosomatidés. Nous avons reconstitué une voie de biosynthèse hypothétique à partir de l’acétyl-CoA dans la mitochondrie. La dernière enzyme de cette voie, l’isovaléryl-CoA déshydrogénase (IVDH), a été caractérisée, et nos premiers résultats indiquent que cette enzyme est impliquée dans la production du butyryl-CoA. / Trypanosoma brucei, a flagellated protozoan parasite of the kinetoplastidae order, is responsible for human sleeping sickness or human african trypanosomiasis (HAT). Its life cycle is complex and involves a haematophageous insect vector (tse-tse fly or Glossina), which ingests parasites during a blood meal on an infected host. After a series of differentiations, the parasites are injected to another host during another blood meal. We studied the energy and intermediary metabolism of the procyclic form of T. brucei, which is present into the midgut of the tse-tse fly. In this parasite, glucose degradation produces acetate into the mitochondria of the parasite and succinate into both the mitochondria and the glycosomes. Glycosomes are specific organites of trypanosomatids in which the glycolysis is compartimentalized. T. brucei uses an "acetate shuttle" to transfer acetyl-CoA from the mitochondrion to the cytosol to feed de novo fatty acids biosynthesis. This acetate production is essential for cell viability. The "acetate shuttle" involves inside the mitochondrion, the acetate:succinate CoA-transferase (ASCT), which converts glucose-derived acetyl-CoA into acetate. We identified and characterised a new mitochondrial enzyme involved in acetate production from glucose, in addition to ASCT: the acetyl-CoA thioesterase (ACH). Indeed, a double mutant affecting expression of both ACH and ASCT doesn’t produce anymore acetate and is lethal, which confirms the essential role of mitochondrial production of acetate. In addition, we showed that ASCT, via the ASCT/SCoAS (succinyl-CoA synthetase) cycle, contributes to mitochondrial ATP production by substrate phosphorylation, while ACH is not involved in ATP production. We also observed that contribution of the ASCT/SCoAS cycle and oxidative phosphorylation by the mitochondrial F0-F1-ATP synthase to ATP production are similar. Threonine is the most rapidly consumed amino acid by the procyclic trypanosomes and its degradation produces acetate and glycine. Using a combination of reverse genetics, proton NMR metabolic profiling and HPTLC, we characterized the first enzymatic step of the pathway, catalysed by the threonine dehydrogenase (TDH) and showed that threonine is the main carbon source for acetate production, de novo fatty acids and sterol biosynthesis. Acetyl-CoA is produced into the mitochondrion from glucose-derived pyruvate by the pyruvate dehydrogenase complex (PDH) and by the two first steps of the threonine degradation pathway, including TDH. Both glucose-derived and threonine-derived acetyl-CoA is then converted into acetate by the same enzymes, ACH and ASCT. We also found that the threonine degradation pathway is under metabolic control. Indeed, TDH activity, TDH expression and threonine-derived acetate production are reduced in the phosphoenolpyruvate carboxykinase (PEPCK) knock out mutant, in which glycolytic flux is redirected towards acetate production. In addition, we showed that, as opposed to glucose-derived acetyl-CoA, metabolism of threonine-derived acetyl-CoA doesn’t contribute to ATP production into the mitochondrion of the parasite. Our results suggest the existence of mitochondrial metabolic channelings, which disconnect pyruvate and threonine degradation pathways leading to acetate production. Trypanosomes developed a specific de novo fatty acids biosynthesis pathway using elongases located in the endoplasmic reticulum and an unusual primer, butyryl-CoA. The biosynthesic pathway of butyryl-CoA has not been investigated so far in trypanosomatids. Genomic data mining of the T. brucei database, highlights an hypothetical mitochondrial biosynthesis pathway from acetyl-CoA to butyryl-CoA. The last enzyme of this pathway, isovaleryl-CoA dehydrogenase (IVDH), was characterised and our first results suggest that this enzyme is indeed involved into butyryl-CoA production.
2

Modulation par approches microbiologique et génétique de la synthèse d'acide acétique lors de la production d'éthanol sous métabolisme oxydo-réductif chez Saccharomyces cerevisiae / Modulation by microbiological and genetical approaches of the synthesis of acetic acid during the production of ethanol under oxido-reductive metabolism in Saccharomyces cerevisiae

Marc, Jillian 26 September 2013 (has links)
L’objectif de ces travaux de thèse était de rechercher un potentiel effet inhibiteur de l’acide acétique endogène sur le métabolisme oxydo réductif de Saccharomyces cerevisiae, afin d’évaluer la pertinence d’une stratégie d’amélioration des capacités de production d’éthanol par la modulation de la synthèse de cet acide. Ces travaux devaient également permettre d’approfondir la compréhension des principaux facteurs commandant la synthèse de l’acide acétique et plus largement des acides organiques. La stratégie de modulation de la synthèse d’acide acétique mise en place reposait sur des approches microbiologique et génétique, consistant en l’ajout d’acide oléique et / ou de carnitine dans le milieu de culture ainsi que la surexpression du gène CIT2 ou la suppression du gène ALD6.Cette démarche a permis de montrer que, contrairement à la version exogène, l’acide acétique endogène ne présentait pas d’effet inhibiteur du métabolisme oxydo réductif de Saccharomyces cerevisiae ou qu’il était négligeable par rapport au stress éthanol. En outre, la modulation de la production de cet acide ne semble pas être une stratégie envisageable en vue de l’amélioration des capacités de production d’éthanol de cette levure, bien qu’une corrélation ait été observée entre les titres finaux de ces deux molécules.En outre, il a été montré que l’isoforme 6 de l’acétaldéhyde déshydrogénase (Ald6p) était essentiel pour assurer la croissance cellulaire normale ainsi que les mécanismes de résistance au stress éthanol dans ces conditions de culture. Plus largement, l’interrelation entre les différents isoformes ne paraissait pas aussi flexible qu’en anaérobiose. Saccharomyces cerevisiae semblait également présenter un métabolisme flexible en réponse à une modulation de la synthèse d’acide acétique. La voie des pentoses phosphates serait ainsi capable de prendre le relais de l’Ald6p pour assurer la régénération du NADPH cytosolique, bien que le flux à travers cette voie semble avoir été limité par le ratio NADP+ / NADPH. Enfin, les cellules paraissaient capables de réguler la synthèse de l’acétyl coA à partir d’acide acétique en réaction à une évolution des besoins anaboliques lors de la fin de la phase de croissance. Elles seraient toutefois incapables de pallier le manque d’acétyl coA suite à la suppression du gène ALD6. La modulation de la synthèse des acides pyruvique et succinique a également fait l’objet de discussions. / The aim of this work was to investigate a potential inhibitory effect of endogenous acetic acid on the oxido-reductive metabolism of Saccharomyces cerevisiae, to assess the relevance of a strategy based of the modulation of the synthesis of this acid, to improve ethanol production capacities. This work should also help to broaden the understanding of the main factors controlling the synthesis of acetic acid, and more generally organic acids. The strategy to modulate the synthesis of acetic acid was based on microbiological and genetic approaches, consisting in the addition of oleic acid and / or carnitine in the medium as well as the overexpression of the gene CIT2 or the deletion of the gene ALD6.This approach has shown that, contrary to exogenous version, endogenous acetic acid did not induce inhibitory effects on the oxido-reductive metabolism of Saccharomyces cerevisiae, or was negligible compared to stress caused by ethanol. Moreover, the modulation of the synthesis of this acid appear to be not an attractive strategy to improve ethanol production capacities of the yeast, although a correlation was observed between the end-culture titer of these two molecules.In addition, it has been shown that the isoform 6 of acetaldehyde dehydrogenase (Ald6p) was essential to ensure regular growth and mechanisms of ethanol stress resistance under these conditions of culture. More broadly, the interrelation between the different isoforms did not seem as flexible as under anaerobic conditions. Saccharomyces cerevisiae also seemed to have a flexible metabolism in response to a modulation of the synthesis of acetic acid. The pentose-phosphate way would be able to take over from Ald6p for regeneration of cytosolic NADPH, although the ratio NADP+ / NADPH seemed to lessen the flux through this pathway. Finally, the cells appeared to be able to regulate the synthesis of acetyl-CoA from acetic acid in response to changing in anabolic needs at the end of the growth phase. However, yeasts would be unable to overcome the lack of acetyl-CoA following the suppression of the gene ALD6. The modulation of the synthesis of pyruvic and succinic acids has also been discussed.
3

Etude des sources de carbone et d'énergie pour la synthèse des lipides de stockage chez la microalgue verte modèle Chlamydomonas reinhardtii / Study of carbon and energy sources for storage lipid synthesis in model green microalga Chlamydomonas reinhardtii

Liang, Yuanxue 17 January 2019 (has links)
Les triacylglycérols d'algues (TAG) représentent une source prometteuse de biocarburants. Les principales étapes de la synthèse des acides gras et du métabolisme du TAG des algues ont été déduites de celles des plantes terrestres, mais on en sait peu sur les sources de carbones et d’énergie intervenant dans la synthèse de lipides de réserve. Nous avons donc étudié la synthèse des acides gras chez l’algue modèle Chlamydomonas reinhardtii en utilisant une combinaison d'approches génétiques, biochimiques et microscopiques. Plus précisément, j'ai d'abord examiné la localisation subcellulaire de gouttelettes de lipides dans des cellules d'algues exposées à une forte lumière, conditions où une plus grande quantité de pouvoir réducteur est produite. J'ai ensuite contribué à mettre en évidence que la bêta-oxydation des acides gras est un processus peroxysomal, et que pendant une carence en azote réalisée en conditions photoautotrophe, des mutants dépourvus de la malate déshydrogénase 2 peroxysomale (mdh2) accumulent 50% plus TAG que les souches parentales. Ces résultats nous ont permis de mettre en évidence l'importance du contexte redox cellulaire sur la synthèse lipidique. Cette étude a également permis de révéler l’existence d'un échange d’énergie entre le peroxysome et le chloroplaste. Enfin, en caractérisant des mutants déficients dans la dégradation des acides aminés à chaîne ramifiée (BCAA), j'ai montré que le catabolisme des BCAAs joue un double rôle dans la synthèse de TAG en fournissant des précurseurs carbonés et de l'ATP. L'ensemble de ces travaux ouvert de nouvelles pistes pour l'amélioration génétique future de souches d'algues pour la production de biocarburants. / Algal triacylglycerols (TAG) represent a promising source for biofuel. The major steps for fatty acid synthesis and TAG metabolism have been deduced based on that of land plants, but little is known about carbon and energy sources. To address this question, we investigated fatty acid synthesis in algal cells using a combination of genetic, biochemical and microscopic approaches in the model microalga Chlamydomonas reinhardtii. Specifically, I first examined subcellular localization of lipid droplets in algal cells exposed to high light, a condition favoring production of reducing power. Secondly, I contributed to put on evidence that the beta-oxidation of fatty acids is a peroxisomal process, and that during photoautotrophic nitrogen starvation, knock-out mutants of the peroxisomal malate dehydrogenase 2 (mdh2) made 50% more TAG than parental strains, highlighting the importance of cellular redox context on lipid synthesis. This study also revealed for the first time the occurrence of an energy trafficking pathway from peroxisome to chloroplast. And finally, by characterizing mutants defected in degradation of branched-chain amino acids (BCAAs), I showed that BCAA catabolism plays a dual role in TAG synthesis via providing carbon precursors and ATP. Taken together, this work highlighted the complex interplay between carbon and energy metabolism in green photosynthetic cells, and pointed future directions for genetic improvement of algal strains for biofuel productions.
4

Métabolisme de l'acétyl-CoA : modulation pharmacologique, approches thérapeutiques et nouvelles maladies / Acetyl-coA metabolism : pharmacological treatment, therapeutic approaches and new diseases

Habarou, Florence 24 November 2016 (has links)
L’acétyl-coA occupe une place centrale dans le métabolisme intermédiaire. Il constitue le point de jonction de plusieurs voies métaboliques telles que la .-oxydation, la glycolyse, le catabolisme de certains acides aminés, la cétolyse, la cétogenèse et la synthèse d’acides gras. Il est également impliqué dans d’autres processus tels que l’acétylation des protéines. Au cours de mon travail de thèse, je me suis attachée à étudier différents aspects du métabolisme de l’acétyl-coA. La première partie de mon travail a porté sur la modulation pharmacologique de la .- oxydation dans le but de corriger des déficits de cette voie métabolique. L’intérêt de traitements par 400µM de bézafibrate ou 75µM de resvératrol dans les formes modérées de déficit en VLCAD et en CPT2 avait été montré précédemment. Par des méthodes de référence et grâce à la mise au point de nouvelles techniques, j’ai pu montrer sur des fibroblastes de patients déficitaires en LCHAD que des traitements par une combinaison de 35µM de bézafibrate et 30µM de resvératrol permettent d’augmenter les capacités d’oxydation du palmitate en stimulant la synthèse protéique. L’effet de cette combinaison était comparable à celui d’un traitement par 400µM de bézafibrate. Dans un second temps, je me suis intéressée à deux cofacteurs impliqués dans le métabolisme de l’acétyl-coA : l’acide lipoïque, cofacteur de quatre .-cétoacides déshydrogénases (PDHc, BCKDHc, .- KGDHc et GCS) et la riboflavine, cofacteur d’acyl-coA déshydrogénases de la .-oxydation et de déshydrogénases impliquées dans le catabolisme des acides aminés ramifiés. Ainsi, j’ai participé à la description d’anomalies du métabolisme de l’acide lipoïque, un nouveau groupe de maladies héréditaires du métabolisme caractérisé par un déficit combiné en .-cétoacides déshydrogénases. Par ailleurs, j’ai pu montrer qu’une hyperprolinémie constitue un biomarqueur intéressant pour le diagnostic d’acidurie glutarique de type II primaire ou secondaire, ces dernières pouvant se rencontrer en cas d’anomalie du métabolisme de la riboflavine. J’ai également évalué l’utilisation d’un mélange racémique de L,D-3-hydroxybutyrate afin de corriger les déficits énergétiques induits par un déficit en PDHc ou GLUT1. Via la cétolyse, le L,D-3- hydroxybutyrate génère de l’acétyl-coA. De façon surprenante, l’administration de ce composé s’est traduite par une amélioration de l’état clinique des patients atteints de déficits en PDHc, alors qu’une dégradation a été observée chez les patients atteints de déficits en GLUT1. Cette évolution différente pourrait souligner l’importance de l’anaplérose chez les patients déficitaires en GLUT1. Enfin, la dernière partie de mon travail de thèse porte sur la description d’un patient atteint d’une forme modérée de déficit en pyruvate carboxylase, cette enzyme étant régulée par l’acétyl-coA. Les difficultés diagnostiques rencontrées devant ces formes modérées sont rapportées, ainsi que des essais de traitement par des composés anaplérotiques et par le bézafibrate, malheureusement sans bénéfice net que ce soit in vitro ou in vivo. En conclusion, le métabolisme de l’acétyl-coA est altéré dans de nombreuses maladies héréditaires du métabolisme, dont certaines sont de description récente. Il peut être modulé par différentes approches pharmacologiques. Le développement de nouvelles techniques et notamment les analyses de flux métaboliques fournissent des outils utiles à son exploration et à l’étude de nouveaux traitements. / Acetyl-CoA is crucial for intermediary metabolism. It is at the crossroad of several metabolic pathways such as beta-oxidation, glycolysis, aminoacid catabolism, ketolysis, and fatty acid synthesis. It is also involved in other processes such as protein acetylation. In this document I studied different aspects of acetyl-CoA metabolism. First, I tried to correct fatty acid oxidation defects through pharmacological approach. Thanks to well- known methods and new ones, I showed that a combination of 30µM resveratrol and 35µM bezafibrate increased fatty acid oxidation capacities by increasing protein synthesis, as well as 400µM bezafibrate. Acetyl-CoA metabolism is also altered due to cofactors defects such as lipoic acid or riboflavine deficiency. I was involved in new diseases description and research for new biomarkers in this context. PDHc and GLUT1 deficiency are two different diseases with the same consequence : a defect in acetyl- CoA production from glucose. In order to improve patients’ quality of life, I evaluated the substitution of ketogenic diet with a racemic mix of L,D-3-hydroxybutyrate in PDHc and GLUT1 deficiency. The clinical evolution of patients was strikingly different, with an improvement in PDHc patients, whereas a degradation was noticed in GLUT1 patients. This difference might underline the role of anaplerosis in GLUT1 deficiency. Finally, I evaluated anaplerotic treatment and bezafibrate treatment in pyruvate carboxylase deficiency, an enzyme allosterically regulated by acetyl-CoA. To conclude, acetyl-CoA metabolism is altered in numerous inherited errors of metabolism, some of them being recently described. It can be modulated by pharmacological approaches. The development of new techniques such as metabolic flux analysis are useful for its study and for new treatments evaluation.

Page generated in 0.016 seconds