• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de l'apoD dans un modèle neurodégénératif induit par l'acide kaïnique

Alikashani, Azadeh January 2010 (has links) (PDF)
De nombreuses pathologies du système nerveux sont associées à une augmentation de l'apolipoprotéineD (apoD), une lipocaline également exprimée au cours du développement normal et du vieillissement. Un gène homologue de l'apoD chez la drosophile a un rôle protecteur dans les situations de stress et son absence réduit la résistance au stress oxydatif et accélère la neurodégénerescence. Notre équipe a été la première à démontrer le rôle protecteur de l'apoD chez les vertèbrés (souris) face à l'encéphalite induite par le cornavirus humain OC43 et aussi face au stress oxydatif induit par le paraquat. Afin de démontrer davantage l'effet bénéfique de l'apoD dans les situations pathologiques du système nerveux central, on a induit la neurodégénerescence en injectant l'acide kaïnique chez des souris transgéniques qui surexpriment l'apoD et des souris témoins non-transgéniques. L'acide kaïnique (analogue du glutamate) est un acide aminé excitateur dont l'activation des récepteurs dans le cerveau cause la dépolarisation des neurones et finalement la mort neuronale par apoptose (mimant la maladie d'Alzheimer). Ainsi ce modèle nous permettra de mesurer l'effet protecteur de l'apoD contre l'apoptose. Suite à l'injection intrapéritonéale, nous avons observé que l'acide kaïnique provoque des crises épileptiques chez les deux groupes de souris peu après l'injection; une légère différence concernant le taux et la gravité des convulsions entre les transgéniques et les non-transgéniques a été détectée. Cependant nous avons démontré par des analyses de type Northern, des immunobuvardages et par RT-PCR semi-quantitatif que l'acide kaïnique induit la surexpression de l'apoD endogène et provoque l'activation des cellules gliales (GFAP) dans l'hippocampe et le cervelet des souris au troisième jour après l'injection. Par contre, on a remarqué la présence de la cyclooxygénase-2 (inflammation) seulement dans l'hippocampe et le cortex de certaines souris (les souris ayant des très fortes convulsions) et son absence totale dans le cervelet. Nous avons aussi montré par la méthode TUNEL que l'acide kaïnique induit l'apoptose dans le cortex, le cervelet et surtout dans l'hippocampe, la zone la plus endommagée dans la maladie d'Alzheimer. Chez les souris transgéniques surexprimant l'apoD, dans les mêmes conditions, il y a moins d'apoptose comparativement aux souris de type sauvage, donc l'apoD pourrait jouer un rôle en modulant l'apoptose ainsi que protéger les neurones en prévenant l'apoptose. Les résultats obtenus au cours de différentes étapes de ce projet, tout d'abord mettent au point un modèle animal de neurodégénérescence associé à une surexpression de l'apoD et ensuite révèlent un autre aspect mal connu de rôle protecteur de l'apoD dans la régulation d'apoptose induite par l'acide kaïnique. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Apolipoprotéine D, Neurodégénérescence, Acide kaïnique, Transgénique, TUNEL, Alzheimer, Apoptose.
2

Détection et modélisation biomathématique d'évènements transitoires dans les signaux EEG intracérébraux : application au suivi de l'épileptogenèse dans un modèle murin

Huneau, Clément 11 June 2013 (has links) (PDF)
Les épilepsies acquises se déclarent après un processus graduel appelé épileptogenèse. Bien que cliniquement silencieux, ce processus implique des modifications fonctionnelles observables notamment par électroencéphalographie. Cette thèse vise i) à identifier des marqueurs électrophysiologiques apparaissant au cours de l'épileptogenèse, et ii) à comprendre les modifications physiopathologiques sous-jacentes responsables de ces marqueurs et de leur évolution temporelle. Dans un premier temps, nous avons, dans un modèle d'épilepsie partielle chez la souris, monitoré des signaux électrophysiologiques intracérébraux pendant la mise en place de la maladie. Nous avons observé dans ces signaux expérimentaux, l'émergence d'événements transitoires pathologiques appelés pointes épileptiques. Nous avons développé des méthodes de traitement du signal pour détecter et caractériser automatiquement ces événements. Ainsi, nous avons pu mettre en évidence certains changements dans la forme des pointes épileptiques au cours de l'épileptogenèse ; en particulier l'apparition et l'augmentation d'une onde qui suit la pointe épileptique. Une hypothèse défendue dans ces travaux est que ces changements morphologiques peuvent constituer des marqueurs de l'épileptogenèse dans ce modèle animal. Dans un second temps, afin d'interpréter ces modifications électrophysiologiques en termes de processus neurophysiologiques sous-jacents, nous avons implémenté un modèle biomathématique, physiologiquement argumenté, capable de simuler des pointes épileptiques. Formellement, ce modèle est un système dynamique non linéaire qui reproduit les interactions synaptiques (excitatrices et inhibitrices) dans une population de neurones. Une analyse de sensibilité de ce modèle a permis de mettre en évidence le rôle critique de certains paramètres de connectivité dans la morphologie des pointes. Nos résultats montrent en effet, qu'une diminution de l'inhibition GABAergique entraîne un accroissement de l'onde dans les pointes épileptiques. À partir du modèle théorique, nous avons pu ainsi émettre des hypothèses sur les modifications opérant au cours du processus d'épileptogenèse. Ces hypothèses ont pu être en partie vérifiées expérimentalement en bloquant artificiellement l'inhibition GABAergique, dans le modèle in vivo chez la souris, et dans un modèle in vitro chez le rat. En conclusion, ce travail de thèse fournit, dans un modèle animal, un biomarqueur électrophysiologique de l'épileptogenèse et tente d'expliquer, grâce à une modélisation biomathématique, les processus neurophysiologiques sous-jacents qu'il reflète.
3

Détection et modélisation biomathématique d'évènements transitoires dans les signaux EEG intracérébraux : application au suivi de l'épileptogenèse dans un modèle murin / Detection and computational modeling of transient events from intracranial EEG : application to the monitoring of epileptogenesis in a mouse model

Huneau, Clément 11 June 2013 (has links)
Les épilepsies acquises se déclarent après un processus graduel appelé épileptogenèse. Bien que cliniquement silencieux, ce processus implique des modifications fonctionnelles observables notamment par électroencéphalographie. Cette thèse vise i) à identifier des marqueurs électrophysiologiques apparaissant au cours de l’épileptogenèse, et ii) à comprendre les modifications physiopathologiques sous-jacentes responsables de ces marqueurs et de leur évolution temporelle. Dans un premier temps, nous avons, dans un modèle d’épilepsie partielle chez la souris, monitoré des signaux électrophysiologiques intracérébraux pendant la mise en place de la maladie. Nous avons observé dans ces signaux expérimentaux, l’émergence d’événements transitoires pathologiques appelés pointes épileptiques. Nous avons développé des méthodes de traitement du signal pour détecter et caractériser automatiquement ces événements. Ainsi, nous avons pu mettre en évidence certains changements dans la forme des pointes épileptiques au cours de l’épileptogenèse ; en particulier l’apparition et l’augmentation d’une onde qui suit la pointe épileptique. Une hypothèse défendue dans ces travaux est que ces changements morphologiques peuvent constituer des marqueurs de l’épileptogenèse dans ce modèle animal. Dans un second temps, afin d’interpréter ces modifications électrophysiologiques en termes de processus neurophysiologiques sous-jacents, nous avons implémenté un modèle biomathématique, physiologiquement argumenté, capable de simuler des pointes épileptiques. Formellement, ce modèle est un système dynamique non linéaire qui reproduit les interactions synaptiques (excitatrices et inhibitrices) dans une population de neurones. Une analyse de sensibilité de ce modèle a permis de mettre en évidence le rôle critique de certains paramètres de connectivité dans la morphologie des pointes. Nos résultats montrent en effet, qu’une diminution de l’inhibition GABAergique entraîne un accroissement de l’onde dans les pointes épileptiques. À partir du modèle théorique, nous avons pu ainsi émettre des hypothèses sur les modifications opérant au cours du processus d’épileptogenèse. Ces hypothèses ont pu être en partie vérifiées expérimentalement en bloquant artificiellement l’inhibition GABAergique, dans le modèle in vivo chez la souris, et dans un modèle in vitro chez le rat. En conclusion, ce travail de thèse fournit, dans un modèle animal, un biomarqueur électrophysiologique de l’épileptogenèse et tente d’expliquer, grâce à une modélisation biomathématique, les processus neurophysiologiques sous-jacents qu’il reflète. / Acquired epilepsies occur after a process called epileptogenesis. Although clinically silent, this process involves some functional modifications which can be observed by electroencephalography. The objectives of this thesis are i) to identify electrophysiological markers occurring during epileptogenesis, and ii) to understand which underlying pathophysiological modifications are responsible for these markers and their evolution. Firstly, using an in vivo experimental mouse model of partial epilepsy, we have monitored intracranial electrophysiological signals during epileptogenesis. We observed the emergence of pathological transient events called epileptic spikes. We have developed signal processing methods in order to automatically detect and characterize these events. Hence, we observed and quantified morphological changes of epileptic spikes during epileptogenesis. In particular, we noticed the emergence and the increase of a wave which directly follows the spike component. In this work, we defend the hypothesis that these morphological modifications can constitute markers of the epileptogenesis process in this animal model of epilepsy. Secondly, in order to interpret these electrophysiological modifications in terms of underlying pathophysiological processes, we have implemented a computational model able to simulate epileptic spikes. This neural mass model is a neurophysiologically-plausible mesoscopic representation of synaptic interactions (excitation and inhibition) in the hippocampus. Based on a sensitivity analysis of model parameters, we were able to determine some connectivity parameters that play a key role in the morphology of simulated epileptic spikes. In particular, our results show that a diminution of GABAergic inhibition leads to an increase of the aforementioned wave. Thus, using this theoretical model, we defined some hypotheses about pathophysiological modifications occurring during the epileptogenesis process. One of these hypotheses has been confirmed in blocking GABAa receptors in the in vivo mouse model, as well as in an in vitro model (rat, organotypic slices). In summary, based on the shape features of epileptic spikes, we devised an electrophysiological biomarker of epileptogenesis observed in a mouse model but useful in Human studies as well. Moreover, a computational modeling approach has permitted to suggest which pathophysiological processes might underlie this biomarker.

Page generated in 0.0384 seconds